A spin and parity decomposition is presented of the (π+π+π−) final state formed opposite a proton by incident 13-GeV/c π+ mesons. The A3 enhancement is identified as the 2− amplitude decaying to f0π+ via an S wave. A change in relative phase is noted between the 2−S amplitude and the other principal contributions; this is not incompatible with analyses of the (3π)− system. The method employs the University of Illinois three-body partialwave analysis program.
A3+ DEFINED AS JP=2- S-WAVE.
We have measured the cross section σ for electron - positron annihilation into three or more hadrons, with at least two charged particles in the final state, at 5 GeV center-of-mass energy. We find a model-independent lower limit of σ>9.1±1.0nb; assuming invariant phase-space production of pions, we calculate the detection efficiency of our detector to be (45 ± 11)%, yielding a cross section σ=21±5nb. The average charged hadron multiplicity is found to be n¯=4.3±0.6.
No description provided.
We have measured the cross section, the distribution of scattering angles, and the distribution of noncoplanarity angles for electron-positron elastic scattering at 5 GeV c. m. energy. An analysis based on 230 events with scattering angles between 50 and 130° yields a ratio of the experimental to theoretical quantum-electrodynamic cross section of 1.03 ± 0.09. The scattering-angle and noncoplanarity-angle distributions are also found to be in excellent agreement with the quantum-electrodynamic predictions.
No description provided.
Evidence is presented for an enhancement in the ωππ mass spectrum at the A2 mass region in π+p interactions at 5 GeV/c. Assuming this effect to be the A2, we calculate the decay rate relative to the ρπ decay mode and obtain the results 0.29 ± 0.08 and 0.10 ± 0.04 for the two final states A20Δ++ and A2+p, respectively. Possible explanations of the discrepancy between these numbers are suggested.
No description provided.
A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
21 differential cross section measurements of the np → pn charge-exchange reaction have been carried out at the synchrotron Saturne (Saclay), for incident neutron momenta between 1 and 2 GeV/ c and in the squared four-momentum transfer range 0 ⩽ −t ⩽ 0.4 (GeV/ c ) 2 . The π exchange peak is seen at all the incident momenta. The s dependence of the very forward slope of this peak shows weak structures near the threshold of inelastic channels.
No description provided.
No description provided.
No description provided.
The reaction e − + p → e − + p + η has been studied in the region of the S 11 (1535)-resonance by detecting the recoil proton in coincidence with the scattered electron. The reaction has been observed at three four-momentum transfers of the virtual photon: q 2 = 0.2, 0.28 and 0.4 (GeV/ c ). First results of the differential cross section measurements are given and compared with quark model calculations.
No description provided.
No description provided.
Data have been taken at the φ energy with the same large solid angle detector which has been used for the measurement of the ϱ and ω production by e + e − annihilations. From the φ → K o L K o S π + φ − excitation curve we have deduced the φ width Γ φ = (3.81 ± 0.37) MeV and the cross-section σ e + e − → K o L K o S = (1.48±0.08±0.12) μ b. (the quoted errors are respectively statistical and systematical.)
EXPERIMENTAL CROSS SECTION INCLUDING RADIATIVE EFFECTS.
FITTED CROSS SECTION AT PHI PEAK, RADIATIVELY CORRECTED.
K + p elastic scattering has been measured over nearly the whole angular range at an incident momentum of 10 GeV/ c . The differential cross-section is found to decrease smoothly in the forward direction to - t ≈ 2 (GeV/ c ) 2 , where there is a change in slope, followed by a further decrease to - t ≈ 6 (GeV/ c ) 2 . Around 90° c.m. the cross-section is approximately 1 nb/(GeV/ c ) 2 , which is more than two orders of magnitude lower than at 5 GeV/ c . The backward peak has no structure.
THESE DATA ARE REPORTED MORE FULLY IN C. BAGLIN ET AL., NP B98, 365 (1975).
A large solid angle detector has been used to observe π + π − π o events produced at the φ energy by electron-positron collisions in the Orsay storage ring. Fitting our data with a Breit and Wigner curve, with a fixed width Γ = (3.8±0.4) MeV coming from K O S K O L analysis, we deduce σ e + e − → π + π − π O = (0.70±0.13) μ bat 2 E = Mφ . Using our measurements on the other φ decay modes we deduce ( φ → π + π − π o )/( φ → K o S K o L ) = 0.47±0.06 and ( φ → η o γ )/( φ → K o S K o L ) = 0.077±0.022. Assuming ( φ → K + K − )/( φ → K o S K o L ) = 1.60, we derive σ TOT = (4.7±0.4) μ b, Γ e + e − = (1.27±0.11 keV and g 2 o /4 π = 14.3±1.3 (without finite width correction). Furthermore (from the observation of the ππγ coplanar events) we put an upper limit to the mode e + e − → φ π + π − γ , Γ ( φ → π + π − γ ) ⩽ 0.007 Γ ( φ → Total ) with 90% C.L.
EXPERIMENTAL CROSS SECTIONS INCLUDING RADIATIVE EFFECTS.
FITTED PARTIAL AND TOTAL CROSS SECTION AT PHI PEAK, RADIATIVELY CORRECTED.