Showing 1 of 81 results
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.
Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L low for each bin of the distribution in Meff. The table corresponds to Fig. 4(d). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L high for each bin of the distribution in Meff. The table corresponds to Fig. 4(e). The statistical and systematic uncertainties are combined for the predicted numbers.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The efficiencies are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The efficiencies are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The efficiencies are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into b s and gluinos decay into t stop (see Fig. 5d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The efficiencies are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The acceptances (in percent, %) are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The acceptances (in percent, %) are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The acceptances (in percent, %) are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The acceptances (in percent, %) are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The limits on observed cross section are calculated for all simplified models. The simplified models are for direct pair production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop)-20 GeV.
The signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Experimental uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Experimental uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Experimental uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Statistical uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Statistical uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Statistical uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W ^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The confidence levels are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluion), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The confidence levels are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the expected and observed values are given. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The confidence levels are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The confidence levels are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the expected and observed values are given.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The confidence levels are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, and mu>0.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.