During the recent commissioning of Au beams at the Brookhaven Alternating Gradient Synchrotron facility, experiment 886 measured production cross sections for π±, K±, p, and p¯ in minimum bias Au+Pt collisions at 11.5A GeV/c. Invariant differential cross sections, Ed3σ/dp3, were measured at several rigidities (p/Z≤1.8 GeV/c) using a 5.7° (fixed-angle) focusing spectrometer. For comparison, particle production was measured in minimum bias Si+Pt collisions at 14.6A GeV/c using the same apparatus and in p+Pt collisions at 12.9 GeV/c using a similar spectrometer at KEK. When normalized to projectile mass, Aproj, the measured π± and K± cross sections are nearly equal for the p+Pt and Si+Pt reactions. In contrast to this behavior, the π− cross section measured in Au+Pt shows a significant excess beyond Aproj scaling of the p+Pt measurement. This enhancement suggests collective phenomena contribute significantly to π− production in the larger Au+Pt colliding system. For the Au+Pt reaction, the π+ and K+ yields also exceed Aproj scaling of p+Pt collisions. However, little significance can be attributed to these excesses due to larger experimental uncertainties for the positive rigidity Au beam measurements. For antiprotons, the Si+Pt and Au+Pt cross sections fall well below Aproj scaling of the p+Pt yields indicating a substantial fraction of the nuclear projectile is ineffective for p¯ production. Comparing with p+Pt multiplicities, the Si+Pt and Au+Pt antiproton yields agree with that expected solely from ‘‘first’’ nucleon-nucleon collisions (i.e., collisions between previously unstruck nucleons). In light of expected p¯ annihilation in the colliding system, such projectile independence is unexpected without additional (projectile dependent) sources of p¯ production. In this case, the data indicate an approximate balance exists between absorption and additional sources of antiprotons. This balance is remarkable given the wide range of projectile mass spanned by these measurements.
No description provided.
No description provided.
No description provided.
The PS185 experiment at LEAR/CERN has investigated strangeness production in antiproton-proton collisions with final states such as $\overline{\Lambda} \Lambda$, $\overline{\Sigma}^0 \Lambda + c.c$, $\overline{\Sigma^+} \Sigma^+$, $\overline{\Sigma^-} \Sigma^-$ and $K_S K_S$. Results are presented from a study of about 32,000 {$K_S K_S X$} events obtained at several antiproton momenta in the regions of 1.45 and 1.7 GeV/c. The $\overline{p} p \to K_S K_S \eta$ cross sections extracted at these momenta constitute the first measurement of this reaction in flight and are broadly consistent with expectations of a phase-space extrapolation of branching ratios from annihilation at rest.
No description provided.
Interest in the production of hyperon-antihyperon pairs following antiproton-proton annihilation stems largely from attempts to understand the nature of flavor production. To date the major focus of both the experimental and the theoretical effort has been on the p¯p→Λ¯Λ reaction. In this paper, we present data on the complementary channels p¯p→Σ¯0Λ and p¯p→Λ¯Σ0. Events from the kinematically similar p¯p→Λ¯Λ reaction were obtained in parallel. The procedure to distinguish these three separate reactions is described and results for all channels are presented. These include the total and differential cross sections, hyperon polarizations, and spin correlation coefficients. Data were obtained at incident antiproton lab momenta of 1.726 and 1.771 GeV/c which correspond to excess kinetic energies in the p¯p→Λ¯Σ0+c.c. reaction of 26 and 40 MeV, respectively, above threshold. Comparisons are made to earlier work at similar excess energies in the p¯p→Λ¯Λ channel. The low-energy regime has been highlighted in this experiment to reduce the complexity in the theoretical analysis. © 1996 The American Physical Society.
No description provided.
Axis error includes +- 2.3/2.3 contribution.
Axis error includes +- 2.3/2.3 contribution.
Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.
The reactions p p → ∑ + ∑ + and p p → ∑ − ∑ − have been investigated at GeV/c beam momentum by the PS185 Collaboration at LEAR, CERN. Of both reaction types together 170 events could be identified. The cross section of the reaction p p → ∑ + ∑ + was determined to be σ tot = 3.68 ± 0.43 μ b at an excess energy of 23 MeV. Its angular distribution exhibits a pronounced forward peaking. The ratio of the cross sections σ( p p → ∑ + ∑ + ) σ( p p → ∑ − ∑ − ) = 2.4 −1.3 +3.0 was extracted with a confidence limit of 90%. It is the first time that experimental data of these reaction channels are available close to the threshold. We compare our results with those of earlier experiments and with theoretical predictions.
Searches for heavy long-lived charged particles are performed using a data sample of 19.8 fb$^{-1}$ from proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for $\tan\beta$ between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. $R$-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.
Cross-section upper limits as a function of the $\tilde{\tau}_1$ mass for direct $\tilde{\tau}_1$ production and three values of $\tan\beta$. Expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties observed limits for three values of $\tan\beta$ and theoretical cross-section prediction for $\tan\beta=10$ with $\pm 1\sigma$ band.
Cross-section upper limits as a function of the $\tilde{\chi}_1$ mass for $\tilde{\tau}_1$ sleptons resulting from the decay of directly produced charginos and neutralinos in GMSB. Observed limits, expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties and theoretical cross-section prediction (dominated by $\tilde{\chi}^0_1 \tilde{\chi}^+_1$ production) with $\pm 1\sigma$ uncertainty. Depending on the hypothesis and to a small extent on $\tan\beta$, in these models, the chargino mass is 210 to 260 GeV higher than the neutralino mass.
Cross-section upper limits for various chargino masses in stable-chargino models. Expected limit with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties, observed limit and theoretical cross-section prediction with $\pm 1\sigma$ uncertainties.
The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
The total and fiducial cross sections for the production of W(LEPTON NU) W(JET JET) or W(LEPTON NU) Z(JET JET). The cross sections are the sum of the WW and WZ processes.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.
This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.
Invariant mass of the photon+jet pair for events passing the final selections. The number of observed events and the fit background estimates are given in each bin, where the fit estimates are rounded to the nearest integer.
The 95% CL upper limits on SIG*BR*A*EPSILON for a hypothetical signal with a Gaussian-shaped M(GAMMA JET) distribution as a function of the signal mass M(G) for four values of the relative width SIGMA(G) / M(G).
Acceptance (A), efficiency (EPSILON), cross-section (SIG) and limits in number of events for the quantum black hole (QBH) benchmark model, as a function of the threshold mass M(th). Uncertainties on the cross section are on the order of 1%. The limits include statistical uncertainties only. Expected limits include the 68% uncertainty band. Acceptance was calculated using parton-level quantities by imposing criteria that apply directly to kinematic selections (photon/jet |eta|, photon/jet transverse momentum, Delta(eta), Delta(R)). All other selections, which in general correspond to event and object quality criteria, were used to calculate the efficiency based on the events included in the acceptance.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.