Data are presented on Pomeron-Pomeron interactions which produce a centralπ+π− system in proton-proton collisions at\(\sqrt s= 62 GeV\) at the CERN Intersecting Storage Rings. This process may favor the production of gluonic bound states. A partial-wave analysis of theπ+π− system shows evidence for the production of the statesf0(975),f0(1400), andf2(1270). The fitted mass for thef2(1270) is about 50 MeV below the world average. In addition, the production mechanism for thef2(1270) is uniquely different from that for the other final states in that there is a correlation between the outgoing protons. this is consistent with a picture of two-gluon exchange with thef2(1270) produced by gluon fusion, and could indicate that thef2(1270) has a glueball component.
No description provided.
Experimental results on the production of dimuons by 800-GeV protons incident on a copper target are presented. The results include measurements of both the continuum of dimuons and the dimuon decays of the three lowest-mass ϒ S states. A description of the apparatus, data acquisition, and analysis techniques is included. A comparison of the results with data taken at lower incident energies indicates a scaling behavior of the continuum dimuon yields.
No description provided.
No description provided.
No description provided.
We have measured the production cross-section times branching ratio for J/ψ→μ + μ − in pp̄ interactions at √ s = 630 GeV in the kinematic range |y|<2.0 and p T >5 GeV /c, BR ( J /ψ→μ + μ − )σ( p p ̄ → J /ψ)=6.18±0.24±0.81 nb . The data sample collected in 1988 and 1989 for an integrated luminosity of 4.7 pb −1 represents a fivefold improvement over the statistics in our earlier study of the J / ψ production process, and the p T distribution which is measured extends to 28 GeV / c . Using event topology we show that the rate for the direct production of J / ψ , via radiative decays of χ states, is larger than that for production via B-hadrons. Production of ψ′ is also studied using the decay modes < ψ ′→ μ + μ − and ψ ′→ J / ψπ + ψ − .
Numerical values supplied by Nick Ellis.
.
.
Preliminary results are presented using the Wide Band photon beam at Fermilab to measure the cross-section of $D^{*\pm}$ and $D^{\pm}$ photoproduction on a Be target over the photon energy range from 100 GeV to 350 GeV....
INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+.
INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+, D0 --> K- 2PI+ PI-.
INCLUDES THE DECAYS: D+ --> K- 2PI+.
We have studied the hadronic production of charmed mesons in the NA 32 experiment at CERN. A special trigger together with a high resolution vertex detector consisting of charge coupled devices and silicon microstrip detectors allowed the selection of very clean samples of charmed mesons. We have collected 852 fully reconstructed decays: 60Ds+→K+K−π+, 543D°→K−π+ andK−π+π−π+ as well as 249D+→K−π+π+ (or charge conjugate). 147 mesons out of our\({{D^0 } \mathord{\left/ {\vphantom {{D^0 } {\bar D^0 }}} \right. \kern-\nulldelimiterspace} {\bar D^0 }}\) sample were produced via chargedD* state. For all charmed mesons we determine the total production cross-section and study thexF andpt2 distributions.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
We report measurements of b-quark and B-hadron production in pp̄ collisions at √ s =630 GeV. We use muon samples to extract beauty production cross-sections over a wide range of transverse momentum in the central rapidity range | y | < 1.5. We compare our results to an O(α s 3 ) QCD prediction and find good agreement over the measured b-quark transverse momentum range 6 GeV / c to 54 GeV / c . Using the shape of the p T and y distribution predicted by QCD to extrapolate our data, we infer a total cross-section for b-quark production at √s=630 GeV of σ( p p ̄ → b b ̄ + X )=19.3±7( exp. )±9( th. μ b .
No description provided.
The cross section is multipled on the B(J/PSI --> MU+ MU-).
No description provided.
An analysis of W and Z boson production at UA1, using 4.66 pb −1 of data from the 1988 and 1989 CERN p p Collider runs at s =0.63 TeV , yields R ≡ σ W Br(W→ μ v)/ σ z Br( Z → μμ )=10.4 −1.5 +1.8 stat.±0.8(syst.) We find R =9.5 −1.0 +1.1 (stat.+syst.) when combining all available UA1 data, in both the electron and muon channel, taken in the period 1983–1989. In the framework of the standard model, the value of R is used to infer the total width of the W boson, Γ W tot =2.18 −0.24 +0.26 (exp.)±0.04(theory) GeV/ c 2 .
No description provided.
We have measured the cross-section of the reaction e + e − → γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + > 103 GeV and Λ − 118 GeV are found. For the decays Z 0 → γ ,Z 0 → π 0 γ , Z 0 → γγγ we find upper limits of 2.9 × 10 −4 ,2.9×10 −4 ,4.1×10 −4 and 1.2×10 −4 , respectively. All limits are at 95% CL.
No description provided.
We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .
Cross section from 1990 data.
Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).
Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).