We report the final results of a search for narrow structures in the p¯p total cross section between 395 and 740 MeV/c with a rms mass resolution of 1.5 MeV around the S-resonance region. A reanalysis of the data significantly improved the statistical accuracy. No evidence is found for narrow structures and a 90%-confidence-level upper limit of 24 mb MeV is set at around 500 MeV/c for the integrated cross section of a Breit-Wigner-type resonance of width ≲4 MeV.
No description provided.
During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.
Comparison of Bhabhas with QED.
Muon angular distributions.
Forward-backward asymmetry from full angular range.
We have measured 〈p⊥〉 as a function of multiplicity for the reaction proton (antiproton) on proton, neon, argon, and xenon. For all reactions, 〈p⊥〉 is independent of multiplicity. We observed that the pion-emission volume is the same for both hydrogen and xenon targets and has a radius about 1.5 fm. Our analysis shows no indication of a deconfinement phase transition in nuclear matter.
No description provided.
Events with a single highpT charged particle were recorded with the Split-Field-Magnet Detector in proton-proton collisions at the CERN-ISR. In the jet opposite to the trigger region the densities of photons and reconstructed neutral pions were measured with a liquid argon shower counter. Scaled momentum distributions of these particles are given and compared with those of charged pions. The spectra of charged and neutral pions coincide. The production cross-section of neutrals in the away jet shows no dependence on the flavour of the trigger particle.
No description provided.
We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.
The inclusive production ofKs0, Λ and\(\bar \Lambda \) particles is investigated in 70 GeV/c\(\bar pp\) interactions in an experiment performed at CERN using BEBC equipped with a TST. Differential cross-sections are studied and compared with corresponding data at surrounding energies. Differences withpp data obtained at the same energy allow an estimate of theKs0, production cross-section in annihilation processes. Evidence is also given for central\(\Lambda \bar \Lambda \) production.
No description provided.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.
The differential cross section for the reaction π + + d → p + p has been measured at pion momenta between 0.48 and 1.16 GeV c with steps of 20 and 40 GeV c for seven CM proton angles between 6° and 61°. At smaller angles, the measured cross sections show a dip at around 0.7 GeV c , while at larger angles the cross sections vary monotonically as a function of incident momentum. The angular distribution shows a considerably rapid variation with increasing momentum. Legendre polynomial fits of the data are presented.
No description provided.
LEGENDRE POLYNOMIAL COEFFICIENTS. NOTE THE FORM OF THE LEGENDRE EXPANSION DIFFERS BY A FACTOR P**-2 FROM THE CONVENTIONAL ONE.
Measurements are reported of p̄p total cross sections from 388 to 599 MeV/ c in small momentum steps. Statistical errors are typically ±0.4%and the normalisation uncertainty is ±0.7%. There is no evidence for the “S-meson”.
DATA TAKEN WITH 8.33 CM LH2 TARGET.
DATA TAKEN WITH 1.17 CM LH2 TARGET.