The differential cross section for the process $\gamma \gamma \to \eta \pi^0$ has been measured in the kinematic range $0.84 \GeV < W < 4.0 \GeV$, $|\cos \theta^*|<0.8$, where $W$ and $\theta^*$ are the energy and $\pi^0$ (or $\eta$) scattering angle, respectively, in the $\gamma\gamma$ center-of-mass system. The results are based on a 223 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+ e^-$ collider. Clear peaks due to the $a_0(980)$ and $a_2(1320)$ are visible. The differential cross sections are fitted in the energy region $0.9 \GeV < W < 1.46 \GeV$ to obtain the parameters of the $a_0(980)$. Its mass, width and $\Gamma_{\gamma \gamma} \B (\eta \pi^0)$ are measured to be $982.3 ^{+0.6}_{-0.7} ^{+3.1}_{-4.7} \MeV/c^2$, $75.6 \pm 1.6 ^{+17.4}_{-10.0} \MeV$ and $128 ^{+3}_{-2} ^{+502}_{-43} \eV$, respectively. The energy and angular dependences above 3.1 GeV are compared with those measured in the $\pi^0 \pi^0$ channel. The integrated cross section over $|\cos \theta^*|<0.8$ has a $W^{-n}$ dependence with $n = 10.5 \pm 1.2 \pm 0.5$, which is slightly larger than that for $\pi^0 \pi^0$. The differential cross sections show a $\sin^{-4} \theta^*$ dependence similar to $\gamma \gamma \to \pi^0 \pi^0$. The measured cross section ratio, $\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) = 0.48 \pm 0.05 \pm 0.04$, is consistent with a QCD-based prediction.
The total cross section integrated over ABS(COS(THETA*)) < 0.8.
The differential cross section as a function of angle for W = 0.85 GeV.
The differential cross section as a function of angle for W = 0.87 GeV.
A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the complete ('all') data sample taken in 1997.
Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality 12 \le Q^2 \le 60 GeV^2 and of the Bjorken scaling variable 0.0002 \le x \le 0.005. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. Values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. This is the first measurement of F_2^{b\bar{b}} in this kinematic range. The results are found to be compatible with the predictions of perturbative quantum chromodynamics and withprevious measurements of F_2^{c\bar{c}}.
Measured NC reduced cross section for charm quarks.
Measuredstructure function F2 for charm quarks.
Measured NC reduced cross section for BOTTOM quarks.
The flavor asymmetry of the light quark sea of the nucleon is determined in the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time from semi-inclusive deep-inelastic scattering. The quantity (dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields of positive and negative pions from unpolarized hydrogen and deuterium targets. The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing an excess of dbar over ubar quarks in the proton.
The ratio of parton distribution functions (PDF) is determined from the ratio of the differencies between charged pion yields for proton and neutron targets: (N_p(pi-)-N_n(pi-))/(N_p(pi+)-N_n(pi+)).
Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.
Per-nucleon cross section ratio for carbon to deuterium.
Per-nucleon cross section ratio for calcium to deuterium.
Per-nucleon cross section ratio for lead to deuterium.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).
We present data on inclusive negative-hadron production from charged-current antineutrino interactions in a 21% Ne-H mixture. Inclusive single-particle distributions are presented and are shown to be insensitive to the momentum transferred to the hadron vertex. Comparisons made to inclusive data from π−p and π−n interactions indicate a close similarity between the hadrons resulting from π-nucleon and ν¯-nucleus interactions. The general features of the ν¯-nucleus data are found to be similar to those seen in ν¯p interactions. This last observation implies that ν¯p and ν¯n interactions are similar and that nuclear effects are small.
No description provided.
No description provided.
No description provided.