We present a measurement of the inelastic, non diffractive J/$\psi$ photoproduction cross section in the reaction $e^{+} p \to e^{+} {J}/\psi X$ with the ZEUS detector at HERA. The J/$\psi$ was identified using both the $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$ decay channels and events were selected within the range $0.4
Cross section for the MU+ MU- decay channel.
Cross section for the MU+ MU- decay channel.
Cross section for the MU+ MU- decay channel.
A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5
No description provided.
Integrated charm cross sections in two Q**2 regions.
Distribution of the fractional momentum of the D* in the gamma*-p system.
Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
The reaction gamma p -> J/Psi p has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/Psi photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q^2 of 5*10^{-5} GeV^2. The photoproduction cross section, sigma_{gamma p -> J/Psi p}, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter $\delta$ in the form sigma_{gamma p -> J/Psi p} \propto W^{\delta} yields the value \delta = 0.92 \pm 0.14 \pm 0.10. The differential cross section dsigma/d|t| is presented over the range |t| < 1.0 GeV^2 where t is the square of the four-momentum exchanged at the proton vertex. d\sigma/d|t| falls exponentially with a slope parameter of 4.6 \pm 0.4 (+0.4-0.6) GeV^{-2}. The measured decay angular distributions are consistent with s-channel helicity conservation.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the muon channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Inclusive photoproduction of $\dspm$ in ep collisions at HERA has been measured with the ZEUS detector for photon-proton centre of mass energies in the range \linebreak \wrang and photon virtuality Q~2 < 4 \g2. The cross section $\sigma_{ep \to \ds X} $ integrated over the kinematic region \ptrangand \etarang is {\xsecs}. Differential cross sections as functions of $p_{\perp}~{\ds}$, $\eta~{\ds}$ and W are given. The data are compared with two next-to-leading order perturbative QCD predictions. For a calculation using a massive charm scheme the predicted cross sections are smaller than the measured ones. A recent calculation using a massless charm scheme is in agreement with the data.
Data from the (Kpi)pi channel.
Data from the (Kpipipi)pi channel.
Data from the (Kpi)pi channel.
The reaction $\gamma p \rightarrow \omega p$ $(\omega \rightarrow \pi~+\pi~-\pi~0$ and $\pi~0\rightarrow\gamma\gamma)$ has been studied in $ep$ interactions using the \mbox{ZEUS} detector at photon-proton centre-of-mass energies between $70$ and $90\uni{GeV}$ and $|t| < 0.6\uni{GeV}~2$, where $t$ is the squared four momentum transferred at the proton vertex. The elastic \ome photoproduction cross section has been measured to be $\sigma_{\gamma p\rightarrow \omega p} = 1.21\pm 0.12\pm 0.23 \mu\mbox{b}$. The differential cross section $d\sigma_{\gamma p\rightarrow \omega p} /d|t|$ has an exponential shape $\mbox{e}~{-b |t|}$ with a slope $b = 10.0\pm 1.2\pm 1.3\uni{GeV}~{-2}$. The angular distributions of the decay pions are consistent with {\it s}-channel helicity conservation. When compared to low energy data, the features of $\omega$ photoproduction as measured at HERA energies are in agreement with those of a soft diffractive process. Previous measurements of the $\rho~0$ and $\phi$ photoproduction cross sections at HERA show a similar behaviour.
Total Elastic Cross Section.
No description provided.
SLOPE OF DSIG/DT distribution.
The differential cross section $d\sigma/dt$ for elastic $\rho~0$ photoproduction, $\gamma p \rightarrow \rho~0 p (\rho~0 \rightarrow \pi~+ \pi~-)$, has been measured in $ep$ interactions at HERA. The squared four-momentum exchanged at the proton vertex, $t$, has been determined directly by measuring the momentum of the scattered proton using the ZEUS Leading Proton Spectrometer (LPS), a large scale system of silicon micro-strip detectors operating close to the HERA proton beam. The LPS allows the measurement of the momentum of high energy protons scattered at small angles with accuracies of 0.4% for the longitudinal momentum and 5 MeV for the transverse momentum. Photoproduction of $\rho~0$ mesons has been investigated in the interval $0.073< |t| <0.40 GeV~2$, for photon virtualities $Q~2<1 GeV~2$ and photon-proton centre-of-mass energies $W$ between 50 and 100 GeV. In the measured range, the $t$ distribution exhibits an exponential shape with a slope parameter $b = 9.8 \pm 0.8 (stat.) \pm 1.1 (syst.) GeV~{-2}$. The use of the LPS eliminates the contamination from events with diffractive dissociation of the proton into low mass states.
SLOPE OF THE DSIG/DT distribution.
Total cross section integrated over t region.
Additional cross section, SIG, not given in the paper.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
Deep inelastic charged--current reactions have been studied in $e~+p$ and $e~-p$ collisions at a center of mass energy of about $300\,\gev$ in the kinematic region $Q~2\greater200\,\gev~2$ and $x\greater0.006$ using the ZEUS detector at HERA. The integrated cross sections for $Q~2\greater200\,\gev~2$ are found to be $\sigep=30.3\,{}~{+5.5}_{\mns4.2}\,{}~{+1.6}_{\mns2.6}\,{\rm pb}$ and $\sigem=54.7\,{}~{+15.9}_{\mns\chax 9.8}\,{}~{+2.8}_{\mns3.4}\,{\rm pb}$. Differential cross sections have been measured as functions of the variables $x$, $y$ and $Q~2$. From the measured differential cross sections $d\sigma/dQ~2$, the $W$ boson mass is determined to be $M_W=79\,{}~{+8} _{-7}{}~{+4}_{-4}\,\gev$. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged--current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of $\sigep(Q~2\greater200\,\gev~2;\eta_{\rm max}<2.5)=0.8\,{}_{-0.7}~ {+1.8}\,\pm0.1\,{\rm pb}$.
No description provided.
No description provided.
No description provided.