The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739
Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.
Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
A search for a long-lived, heavy neutral lepton ($\mathcal{N}$) in 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The $\mathcal{N}$ is produced via $W \rightarrow \mathcal{N} \mu$ or $W \rightarrow \mathcal{N} e$ and decays into two charged leptons and a neutrino, forming a displaced vertex. The $\mathcal{N}$ mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the $\mathcal{N}$ with the left-handed neutrino states for the $\mathcal{N}$ mass range $3$ GeV $< m_{\mathcal{N}} < 15$ GeV. For the first time, limits are given for both single-flavor and multiflavor mixing scenarios motivated by neutrino flavor oscillation results for both the normal and inverted neutrino-mass hierarchies.
Expected and observed 95% CL for the 1SFH e Dirac model.
Expected and observed 95% CL for the 1SFH e Majorana model.
Expected and observed 95% CL for the 1SFH mu Dirac model.
A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.
Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.
The fundamental building blocks of the proton, quarks and gluons, have been known for decades. However, we still have an incomplete theoretical and experimental understanding of how these particles and their dynamics give rise to the quantum bound state of the proton and its physical properties, such as for example its spin. The two up and the single down quarks that comprise the proton in the simplest picture account only for a few percent of the proton mass, the bulk of which is in the form of quark kinetic and potential energy and gluon energy from the strong force. An essential feature of this force, as described by quantum chromodynamics, is its ability to create matter-antimatter quark pairs inside the proton that exist only for a very short time. Their fleeting existence makes the antimatter quarks within protons difficult to study, but their existence is discernible in reactions where a matter-antimatter quark pair annihilates. In this picture of quark-antiquark creation by the strong force, the probability distributions as a function of momentum for the presence of up and down antimatter quarks should be nearly identical, since their masses are quite similar and small compared to the mass of the proton. In the present manuscript, we show evidence from muon pair production measurements that these distributions are significantly different, with more abundant down antimatter quarks than up antimatter quarks over a wide range of momentum. These results revive interest in several proposed mechanisms as the origin of this antimatter asymmetry in the proton that had been disfavored by the previous results and point to the future measurements that can distinguish between these mechanisms.
Cross section ratios $\sigma_{D}/2\sigma_{H}$ binned in $x_t$ with their statistical and systematic uncertainties and the average values for the kinematic variables of each $x_t$ bin. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column is the experimental resolution in $x_t$ as determined by Monte Carlo simulations.
Ratios of $\bar{d}(x)$ to $\bar{u}(x)$ with their upper and lower statistical and systematic uncertainties. The analysis was based on the present cross section ratio data, and next-to-leading order calculations of the Drell-Yan cross sections using CT18 parton distributions for all except the ratio of $\bar{d}(x)$ to $\bar{u}(x)$. The systematic uncertainty is fully correlated among all $x$ bins. The systematic uncertainty does not include a contribution from the choice of the base (CT18) pdf, which is small if added in quadrature to the other systematic uncertainties.
Ratios of $\mathbf{\sigma_D}$ to $\mathbf{2\sigma_H}$ as a function of $\mathbf{P_T}$. Ratios of $\sigma_D$ to $2\sigma_H$ with their statistical and systematic uncertainties as a function of transverse momentum, $P_T$. The cross section ratios are defined as the ratio of luminosity-corrected yields from the hydrogen and deuterium targets. The final column, $\delta P_T$ is the experimental resolution in $P_T$ as determined by Monte Carlo simulation.
The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty
The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}\pi^{-}$, which is required to have an invariant mass within 100$\mathrm{\,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$\mathrm{\,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$\mathrm{\,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be \begin{eqnarray*} R_{K^{*0}} = \begin{cases} 0.66~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.03\mathrm{\,(syst)} & \textrm{for } 0.045 < q^{2} < 1.1~\mathrm{\,GeV^2}c^4 \, , \\ 0.69~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.05\mathrm{\,(syst)} & \textrm{for } 1.1\phantom{00} < q^{2} < 6.0~\mathrm{\,GeV^2}c^4 \, . \end{cases} \end{eqnarray*} The corresponding 95.4\% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.
Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).
Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).
Data are presented for the reaction ep → ep π 0 at a nominal four-momentum transfer squared of 0.5 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Details are given of the experimental method and the results are given for isobar masses in the range 1.19 – 1.73 GeV/ c 2 .
No description provided.
No description provided.
No description provided.