Measurement of inclusive pi0 production in hadronic Z0 decays

The DELPHI collaboration Adam, W. ; Adye, T. ; Agasi, E. ; et al.
Z.Phys.C 69 (1996) 561-574, 1996.
Inspire Record 401100 DOI 10.17182/hepdata.48063

An analysis is presented of inclusive π0 production in Z0 decays measured with the DELPHI detector. At low energies, π0 decays are reconstructed by using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to $x_p={2cdot p≪/{sqrt s}=0.75}$) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for qq̅ and bb̅ events. The number of π0’s per hadronic Z0 event is $N(≪^0)/Z_{had} ^0=9.2pm 0.2({⤪ stat})pm 1.0 ({⤪ syst})$ and for bb̅ events the number of π0’s is ${⤪ N}(≪^0)/{⤪ b⋏r b}=10.1pm 0.4({⤪ stat})pm 1.1 ({⤪ syst})$. The ratio of the number of π0’s in bb̅ events to hadronic Z0 events is less affected by the systematic errors and is found to be 1.09 ±0.05 ±0.01. The measured π0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the $xi_{⤪ p}={⤪ ln}(1/{⤪ x_p})$ distribution is $xi_p^{⋆ar}=3.90_{-0.14}^{+0.24}.$ The average number of π0’s from the decay of primary B hadrons is found to be N(B → π0X)/B hadron = 2.78 ± 0.15(stat) ± 0.60(syst).

4 data tables

Differential cross section for all events.

Mean PI0 multiplicity extrapolated below 0.011 with JETSET 7.3.

Differential cross section for the enriched (b bbar) data set.

More…

A Comparison of b and (u d s) quark jets to gluon jets

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 69 (1996) 543-560, 1996.
Inspire Record 399990 DOI 10.17182/hepdata.48094

Symmetric three-jet events are selected from hadronic Z0 decays such that the two lower energy jets are each produced at an angle of about 150° with respect to the highest energy jet. In some cases, a displaced secondary vertex is reconstructed in one of the two lower energy jets, which permits the other lower energy jet to be identified as a gluon jet through anti-tagging. In other cases, the highest energy jet is tagged as a b jet or as a light quark (uds) jet using secondary vertex or track impact parameter and momentum information. Comparing the two lower energy jets of the events with a tag in the highest energy jet to the anti-tagged gluon jets yields a direct comparison of b, uds and gluon jets, which are produced with the same energy of about 24 GeV and under the same conditions. We observe b jets and gluon jets to have similar properties as measured by the angular distribution of particle energy around the jet directions and by the fragmentation functions. In contrast, gluon jets are found to be significantly broader and to have a markedly softer fragmentation function than uds jets. For the k⊥ jet finder with ycut=0.02, we find $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ b} {⤪ quark}}=1.089pm 0.024 ({⤪ stat.})pm0.024 ({⤪ syst.})$$ $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ uds} {⤪ quark}}=1.390pm 0.038 ({⤪ stat.})pm0.032 ({⤪ syst.})$$ as the ratios of the mean charged particle multiplicity in the gluon jets compared to the b and uds jets. Results are also reported using the cone jet finder.

2 data tables

Two method of jet's reconstruction: 'kt' and 'cone' (see text).

Two method of jet's reconstruction: 'kt' and 'cone' (see text). QUARK meansUQ or DQ or SQ.


Measurement of Delta++ (1232) production in hadronic Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 361 (1995) 207-220, 1995.
Inspire Record 399737 DOI 10.17182/hepdata.48095

A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.

2 data tables

Differential DELTA(1232)++ cross section. Errors are combined statistics and systematics.

Mean multiplicities. Extrapolation to full x range using a combination of JETSET, HERWIG and UCLA models. The second systematic error comes from the uncertainty in the extrapolation.


Study of prompt photon production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1995) 1-14, 1995.
Inspire Record 397391 DOI 10.17182/hepdata.48136

None

3 data tables

Rates for gamma + 1 jet.

Rates for gamma + 2 jet.

Rates for gamma + 3 jet.


A Model independent measurement of quark and gluon jet properties and differences

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 179-202, 1995.
Inspire Record 396179 DOI 10.17182/hepdata.47862

None

3 data tables

THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).

CONST is the parameter used in jet's definition (see text).

CONST is the parameter used in jet's definition (see text).


Measurement of the multiplicity of charm quark pairs from gluons in hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 353 (1995) 595-605, 1995.
Inspire Record 395451 DOI 10.17182/hepdata.48158

We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .

1 data table

Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).


A Measurement of charged particle multiplicity in Z0 --> c anti-c and Z0 --> b anti-b events

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 352 (1995) 176-186, 1995.
Inspire Record 393953 DOI 10.17182/hepdata.48168

We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.

2 data tables

Second systematic error is a common scale uncertainty.

Difference in the TOTAL charged particle multiplicity.


Inclusive measurements of the K+- and p / anti-p production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 444 (1995) 3-26, 1995.
Inspire Record 394052 DOI 10.17182/hepdata.47973

This analysis, based on a sample of 170000 hadronic Z0 decays, provides a measurement of the K ± and p/ p differential cross sections which is compared to string- and cluster fragmentation models. The total multiplicities for K ± and p/ p per hadronic event were found to be: NK = 2.26 ± 0.18 and N p = 1.07 ± 0.14. The positions ξ * of the maxima of the differential cross sections as a function of ξ = ln(1/ x p ) for K ± and p/ p were determined to be 2.63 ± 0.07 and 2.96 ± 0.16 respectively. A comparison of the ξ * values for various identified particles measured at LEP with the prediction of the Modified Leading Logarithm Approximation with Local Parton Hadron Duality model has been performed. The measured ξ * position as a function of the hadron mass, after corrections due to particle decays, is in agreement with the model calculation.

6 data tables

Second systematic error comes from the extrapolation to the full Z range (measured range is 0.018 < Z < 0.5) using the JETSET prediction.

Second systematic error comes from the extrapolation to the full Z range (measured range is 0.031 < Z < 0.11) using the JETSET prediction.

No description provided.

More…

Rescattering probed by the emission of slow target associated particles in high-energy heavy ion interactions

The EMU01 collaboration Adamovich, M.I ; Aggarwal, M.M ; Alexandrov, Y.A ; et al.
Phys.Lett.B 363 (1995) 230-236, 1995.
Inspire Record 406952 DOI 10.17182/hepdata.28438

In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.

6 data tables

No description provided.

PROJECTILE ASSOCIATED HE-FRAGMENTS.

No description provided.

More…

Si-28 (S-32) fragmentation at 3.7-A/GeV, 14.6-A/GeV and 200-A/GeV

The EMU1 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.A 351 (1995) 311-316, 1995.
Inspire Record 407109 DOI 10.17182/hepdata.16506

The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.

6 data tables

JINR.

BNL-815.

CERN-EMU-001.

More…