We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.
No description provided.
First results from the magnetic detector PLUTO at the new e + e − storage ring PETRA are shown. The ratio R of the cross section for hadron production to that for μ-pair production has been measured to be R = 5.0 ± 0.5 at 13 GeV and 4.3 ±0.5 at 17 GeV. Both values have an additional systematic error of 20%. The events show a typical 2-jet structure. The mean transverse momentum approaches a constant value with increasing energy implying a shrinkage of the jet opening angle.
TAU HEAVY LEPTON PAIR CONTRIBUTIONS HAVE BEEN SUBTRACTED. R AT 13 AND 17 GEV, TOGETHER WITH SOME SELECTED LOWER ENERGY MEASUREMENTS FROM PLUTO AT DORIS.
Data from earlier preprint DESY-79-06. NUMERICAL VALUES MEASURED OFF GRAPH IN PREPRINT.
Charged- and neutral-particle production from 400-GeV/c pp collisions are measured simultaneously using the Fermilab 15-ft bubble chamber. The π0 and K0 cross sections are rising at Fermilab energies, while the Λ0 cross section remains fairly constant. Similarly, the average number of π0's and K0's increases as a function of the number of negative particles in an event, yet no such dependence is noted for the Λ0's. The ratio of average number of π0 to average number of π− per inelastic collisions is found to be constant at Serpukhov and Fermilab energies (40 to 400 GeV/c) and equal to 1.22±0.02. Cross sections for Σ0 and Σ¯0 production are measured and limits are found for η0 and ω0 production. Neutral- and charged-pion correlations are compared with five pion-production models.
No description provided.
No description provided.
No description provided.
Toward the goal of experimentally determining pp elastic scattering amplitudes at 6 GeV/c, we have measured a linear combination of triple-spin correlation parameters and also a linear combination of spintransfer parameters over the |t| range between 0.2 and 1.0 (GeV/c)2. A horizontally polarized beam (S direction) was obtained by precessing the spin of the polarized beam from the Argonne Zero Gradient Synchrotron using a superconducting solenoid. The target protons were polarized vertically (N direction) and the polarization of the recoil protons was measured with a carbon polarimeter. The results are consistent with the amplitude corresponding to π exchange being almost real and positive.
KSS = (S00S) AND HSNS = (SN0S) MEASURED HERE CONTAIN SMALL ADMIXTURES OF THE OTHER SPIN-TRANSFER AND TRIPLE-SPIN CORRELATION PARAMETERS RESPECTIVELY DUE TO THE POLARIZED TARGET MAGNETIC FIELD - SEE TEXT. MEAN VALUE OF HSNS OVER THIS T-RANGE IS 0.098 +- 0.085. PARITY CONSERVATION REQUIRES THE VANISHING OF THE PARAMETERS KSN, HSNN, (000S) AND DNS, WHILE (000N) MUST AGREE WITH THE SINGLE SCATTERING POLARIZATION PARAMETER (0N00).
Inclusive V0 production in 6.5-GeV/c K−p interactions is studied using the ANL 12-ft-diameter hydrogen bubble chamber. The total cross sections for inclusive K¯0 and Λ0 production are σ(K¯0)=7.98±0.49 mb and σ(Λ0)=3.94±0.24 mb. Semi-inclusive differential cross sections are determined as functions of Feynman x and transverse momentum squared of the V0's and of four-momentum transfer to the V0. The average charge multiplicity, the ratio 〈nc〉D, and the correlation function f2cc for the neutrally charged hadronic system recoiling from the V0 are determined as functions of the mass of the recoiling system. Results are used to examine universal aspects of multiparticle production.
No description provided.
No description provided.
No description provided.
None
No description provided.
DISTRIBUTIONS OF EVENTS IN THETA, PSI AND Q**2.
The production of KS, Λ, Λ¯, and γ in π−p collisions at 147 GeV/c is analyzed. Cross sections, rapidity, Feynman-x, and pT2 distributions are presented and compared to charged-particle production. The energy dependence of multiplicities in π−p and pp collisions is shown. A new scaling form for the correlation of neutral- and charged-particle multiplicities is presented for compilations of πp and pp data.
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
We present data obtained at the ISR, on the determination of the ratio R = γ π 0 at s = 30.6 GeV and we compare the results with our previous measurement at s = 53.2 GeV. The ratio R = γ π 0 integrated over the interval 0.1 ⩽ χ T ⩽ 0.2 is (1.6 ± 0.5) × 10 −2 and we obtain an indication of a universal χ T dependence.
No description provided.
New data for the reaction e + e − →ϒ(9.46) have been obtained using the DASP detector at the DORIS storage ring. The electronic width Γ ee is (1.5±0.4) keV. The branching ratio for the decay into muon pairs is (2.5 ± 2.1)%. Energy spectra for inclusive production of hadrons are given.
VISIBLE HADRONIC TOTAL CROSS SECTION.
INVARIANT INCLUSIVE PRODUCTION CROSS SECTION E*D3(SIG)/DP**3 BOTH ON AND OFF THE UPSILON(9.46) RESONANCE. NO SIGNIFICANT DIFFERENCE IN EXPONENTIAL SLOPE AS A FUNCTION OF PARTICLE ENERGY E(P=3).
The reaction pn→ppπ at 19 GeV/c is studied. It is dominated by the process where the neutron dissociates into the pπ- system and exhibits the characteristic features of diffraction dissociation. The pπ- mass distribution shows a strong peak at 1.3 GeV but is otherwise rather structureless. By comparison with other experiments we find that this peak is neither seen at higher nor at lower energies. The reason why it is not seen in experiments at higher energies seems to be that they suffer from strong experimental limitations. The 1.3 GeV peak is connected with small momentum transfers and an analysis of the moments of the decay angular distributions shows that this peak is a low-spin phenomenon. For larger momentum transfers the lowest moments show an onset already at threshold. By comparison with a pion exchange Deck model we find a substantial baryon exchange contribution for small momentum transfers. This contribution seems to become more pronounced at higher energies.
CORRECTED FOR UNOBSERVED DECAY MODES.