Version 2
Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2024) 047, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

91 data tables

Efficiencies of the Run 2 and Run 3 displaced dimuon triggers as a function of $c\tau$ for the HAHM signal events with $m_{Z_D} = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.

Efficiencies of the various displaced dimuon trigger paths and their combination as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.

Efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m_{Z_D} = 20\ GeV$. Solid curves show efficiencies achieved with the Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.

More…

Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 305, 2024.
Inspire Record 2764820 DOI 10.17182/hepdata.150693

The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.

21 data tables

The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.

The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.

The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)

More…

Search for the Z boson decay to $\tau\tau\mu\mu$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-016, 2024.
Inspire Record 2781837 DOI 10.17182/hepdata.151336

The first search for the Z boson decay to $\tau\tau\mu\mu$ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the Z $\to$ $\tau\tau\mu\mu$ to Z $\to$ 4$\mu$ branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators.

8 data tables

Distribution of $m_{4\mu}$ after the maximum likelihood fit of the background-only model (stacked histograms) to the data (black points). The nuisance parameters are set to their post-fit values and the signal (black dotted line) is overlaid, scaled to the upper limit on its cross section of 6.9 times the SM expectation. The gray shaded areas in both panels correspond to the total uncertainty in the background prediction. The black vertical bars indicate the statistical uncertainty in the data.

Observed limits at the 95% CL on $C_{\mathrm{LL}}^{2233}$ vs. $C_{\mathrm{LR}}^{2332}$ (red) showing the full range.

Observed limits at the 95% CL on $C_{\mathrm{LR}}^{2233}$ vs. $C_{\mathrm{LL}}^{2332}$ (orange) showing the full range.

More…

Search for production of a single vector-like quark decaying to tH or tZ in the all-hadronic final state in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-19-001, 2024.
Inspire Record 2784426 DOI 10.17182/hepdata.144172

A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$ The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Event kinematics and the presence of jets containing b hadrons are used to reconstruct the hadronic decays of the t quark and H or Z boson. No significant deviation from the standard model prediction is observed in the data. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.

57 data tables

Five-jet invariant mass distributions in the 2M1L region after the high-mass (green crosses) and low-mass (black circles) selections in 2018 dataset. The low-mass selection results in a mass distribution that is smoothly falling, unlike the high-mass selection. The high-mass selection is more efficient for signal T masses above 700 GeV.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 2M1L and 3M regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

Weights from b tagging efficiency ratios as functions of the five-jet invariant mass in 2018 data for the low-mass selection, connecting the 3M and 3T regions. The red line corresponds to the central value of the transfer function and the shaded area represents the 95% confidence level uncertainty band. For the low-mass analysis only signals with mass below 800GeV are tested, so primarily the lower part of the distribution contributes to the final result.

More…