Ultrarelativistic heavy-ion collisions produce a state of hot and dense strongly interacting QCD matter called quark--gluon plasma (QGP). On an event-by-event basis, the volume of the QGP in ultracentral collisions is mostly constant, while its total entropy can vary significantly due to quantum fluctuations, leading to variations in the temperature of the system. Exploiting this unique feature of ultracentral collisions allows for the interpretation of the correlation of the mean transverse momentum of produced charged hadrons and the number of charged hadrons as a measure for the speed of sound. It is determined by fitting the relative increase in transverse momentum with respect to the relative change in the average charged-particle density measured at midrapidity. This study reports the event-average transverse momentum of charged particles as well as the self-normalized variance, skewness, and kurtosis of the event-by-event transverse momentum distribution in ultracentral Pb-Pb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair using the ALICE detector. Different centrality estimators based on charged-particle multiplicity or the transverse energy of the event are used to select ultracentral collisions. By ensuring a pseudorapidity gap between the region used to define the centrality and the region used to perform the measurement, the influence of biases on the rise of the mean transverse momentum is tested. The measured values are found to strongly depend on the exploited centrality estimator. The variance shows a steep decrease towards ultracentral collisions, while the skewness variables show a maximum, followed by a fast decrease. These non-Gaussian features are understood in terms of the vanishing of the impact-parameter fluctuations contributing to the event-to-event transverse momentum distribution.
Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimators based on $N_{\mathrm{ch}}$, ${N_{\mathrm{tracklets}}}$, and $E_{\mathrm{T}}$ within $|\eta|\leq 0.8$.
Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $-3.7<\eta<-1.7$ and $2.8 < \eta <5.1$.
Normalized $p_{\mathrm{T}}$-spectrum ratio as a function as a function of centrality in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $0.5 \leq |\eta|\leq 0.8$.
This work reports femtoscopic correlations of p$-$p ($\bar{\rm p}-\bar{\rm p}$) and p$-$d ($\bar{\rm p}-\bar{\rm d}$) pairs measured in Pb$-$Pb collisions at center-of-mass energy per nucleon $\sqrt{s_{\rm NN}}$ = 5.02 TeV in the ALICE Collaboration. A fit to the measured proton-proton correlation functions allows one to extract the dependence of the nucleon femtoscopic radius of the particle-emitting source on the pair transverse mass ($m_\text{T}$) and on the average charge particle multiplicity $\langle\text{dN}_\text{ch}/\text{d}η\rangle^{1/3}$ for three centrality intervals (0$-$10$\%$, 10$-$30$\%$, 30$-$50$\%$). In both cases, the expected power-law and linear scalings are observed, respectively. The measured p$-$d correlations can be described by both two- and three-body calculations, indicating that the femtoscopy observable is not sensitive to the short-distance features of the dynamics of the p$-$(p$-$n) system, due to the large inter-particle distances in Pb$-$Pb collisions at the LHC. Indeed, in this study, the minimum measured femtoscopic source sizes for protons and deuterons have a minimum value at $2.73^{+0.05}_{-0.05}$ and $3.10^{+1.04}_{-0.86}$ fm, respectively, for the 30$-$50$\%$ centrality collisions. Moreover, the $m_{\rm{T}}$-scaling obtained for the p$-$p and p$-$d systems is compatible within 1$σ$ of the uncertainties. These findings provide new input for fundamental studies on the production of light (anti)nuclei under extreme conditions.
proton-proton (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
We present a search for the rare flavor-changing neutral-current decay $B^0 \to K^{\ast 0} τ^+ τ^-$ with data collected by the Belle II experiment at the SuperKEKB electron-positron collider. The analysis uses a 365 fb$^{-1}$ data sample recorded at the center-of-mass energy of the $Υ(4S)$ resonance. One of the $B$ mesons produced in the $Υ(4S)\to B^0 \bar{B}^0$ process is fully reconstructed in a hadronic decay mode, while its companion $B$ meson is required to decay into a $K^{\ast 0}$ and two $τ$ leptons of opposite charge. The $τ$ leptons are reconstructed in final states with a single electron, muon, charged pion or charged $ρ$ meson, and additional neutrinos. We set an upper limit on the branching ratio of $BR(B^0 \to K^{\ast 0} τ^+ τ^-) < 1.8 \times 10^{-3}$ at the 90% confidence level, which is the most stringent constraint reported to date.
- - - - - - - - Overview of HEPData Record - - - - - - - -<br/><br/></ul><b>Post-fit yields:</b><ul><li><a href="159541?version=1&table=Postfit%20yields:%20fit%20variable">Fit variable $\eta(\rm{BDT})$</a></ul><b>Signal $q^{2}$:</b><ul><li><a href="159541?version=1&table=Generated%20$q^2$"> Generated $q^{2}$ distribution </a></ul><b>Signal selection efficiency:</b><ul><li><a href="159541?version=1&table=Selection%20efficiency"> Selection efficieny in signal region </a>
Observed yields and fit results in bins of $\eta(\rm{BDT})$ as obtained by the fit on the four signal categories, corresponding to an integrated luminosity of 365 fb$^{-1}$. The yields are shown for $B^0 \rightarrow K^{\ast 0}\tau\tau$ signal and the two background components ($B\bar{B}$ decays and $q\bar{q}$ continuum).
Distribution of the di-tau invariant mass squared $q^2$ assumed for the generated signal $B^0 \rightarrow K^{\ast 0}\tau\tau$ events.
This Letter presents measurements of long-range transverse-momentum correlations using a new observable, $v_{0}(p_\mathrm{T})$, which serves as a probe of radial flow and medium properties in heavy-ion collisions. Results are reported for inclusive charged particles, pions, kaons, and protons across various centrality intervals in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, recorded by the ALICE detector. A pseudorapidity-gap technique, similar to that used in anisotropic-flow studies, is employed to suppress short-range correlations. At low $p_\mathrm{T}$, a characteristic mass ordering consistent with hydrodynamic collective flow is observed. At higher $p_\mathrm{T}$ ($> 3$ GeV/$c$), protons exhibit larger $v_{0}(p_\mathrm{T})$ than pions and kaons, in agreement with expectations from quark-recombination models. These results are sensitive to the bulk viscosity and the equation of state of the QCD medium formed in heavy-ion collisions.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 10$–$20% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 30$–$40% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 60$–$70% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
Heavy-flavor quarks produced in proton--proton (pp) collisions provide a unique opportunity to investigate the evolution of quark-initiated parton showers from initial hard scatterings to final-state hadrons. By examining jets that contain heavy-flavor hadrons, this study explores the effects of both perturbative and non-perturbative QCD on jet formation and structure. The angular differences between various jet axes, $ΔR_{\rm axis}$, offer insight into the radiation patterns and fragmentation of charm quarks. The first measurement of D$^{0}$-tagged jet axes differences in pp collisions at $\sqrt{s}=5.02$ TeV by the ALICE experiment at the LHC is presented for jets with transverse momentum $p_{\rm T}^{\rm ch~jet} \geq 10$${\rm GeV}/c$ and D$^0$ mesons with $p_{\rm T}^{\rm D^{0}} \geq 5$${\rm GeV}/c$. In this D$^0$-meson-tagged jet measurement, three jet axis definitions, each with different sensitivities to soft, wide-angle radiation, are used: the Standard axis, Soft Drop groomed axis, and Winner-Takes-All axis. Measurements of the radial distributions of D$^0$ mesons with respect to the jet axes, $ΔR_{\mathrm{axis-D^0}}$, are reported, along with the angle, $ΔR_{\mathrm{axis}}$, between the three jet axes. The D$^{0}$ meson emerges as the leading particle in these jets, closely aligning with the Winner-Takes-All axis and diverging from the Standard jet axis. The results also examine how varying the sensitivity to soft radiation with grooming influences the orientation of the Soft Drop jet axis, and uncover that charm-jet structure is more likely to survive grooming when the Soft Drop axis is further from the D$^{0}$ direction, providing further evidence of the dead-cone effect recently measured by ALICE.
$\Delta R_{\rm axis}$ distribution for $\rm STD-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
$\Delta R_{\rm axis}$ distribution for $\rm WTA-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
$\Delta R_{\rm axis}$ distribution for $\rm STD-WTA$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
Femtoscopy of non-identical particle pairs has been instrumental for precision measurements of both two-particle sources and the final-state interactions in high-energy elementary and heavy-ion collisions. The majority of measurements assessing the source properties are based on identical particle pairs, providing direct access to the characteristics of the single-particle source. The work in this paper demonstrates, via femtoscopy measurements of charged pion--deuteron pairs in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, the feasibility of accessing the characteristics of the single-particle femtoscopic source by using particle pairs with large mass differences such as pions and deuterons. The first experimental results of the measurement of deuteron source sizes in ultrarelativistic heavy-ion collisions are presented. The results show good agreement with the trend derived from other charged hadrons such as pions, kaons, and protons as a function of transverse mass, indicating similar source properties.
pion-deuteron (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
pion-deuteron (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
pion-deuteron (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].
Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.
Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.
The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.
The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.
Nch as a function of $\eta$, presented in Figure 5.
This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/dη$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|η\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/dη$ are presented for a range of centrality intervals and the average $dE_{T}/dη$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $η$ and improved precision in low-$N_{\mathrm{part}}$ events.
An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.
An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.
An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.
This paper presents a study of the inclusive forward $J/ψ$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} =13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative $J/ψ$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|η| < 1$. The $J/ψ$ mesons are reconstructed via their decay into $μ^+ μ^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the $J/ψ$ rapidity region. The results show a steeper-than-linear increase of the $J/ψ$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.
Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.