Date

Measurement of the inclusive isolated-photon production cross section in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 553, 2025.
Inspire Record 2831272 DOI 10.17182/hepdata.157542

The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb$-$Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb$-$Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb$-$Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.

9 data tables

Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.2$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.

Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.4$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.

Ratio of isolated-photon cross section measured with $R=0.4$ over $R=0.2$ for Pb$-$Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$. Each column for each Pb$-$Pb collisions centrality class and for pp collisions. The last two columns for the NLO pQCD JETPHOX calculations for pp (PDF) and Pb$-$Pb (nPDF) collisions. Data statistical and systematic uncertainties are provided. The theory statiscal (Monte Carlo approach) and PDF uncertainties are provided.

More…

First measurement of $\mathrm{D_{s1}}(1^{+})(2536)^+$ and $\mathrm{D_{s2}^{*}(2^{+})(2573)^+}$ production in proton--proton collisions at $\sqrt{s} = 13$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.D 111 (2025) 112005, 2025.
Inspire Record 2829721 DOI 10.17182/hepdata.158279

The production yields of the orbitally excited charm-strange mesons $\mathrm{D_{s1}(1^{+})(2536)^+}$ and $\mathrm{D_{s2}^{*}(2^{+})(2573)^+}$were measured for the first time in proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV with the ALICE experiment at the LHC. The $\mathrm{D_{s1}^+}$ and $\mathrm{D_{s2}^{*+}}$ mesons were measured at midrapidity ($|y|<0.5$) in minimum-bias and high-multiplicity pp collisions in the transverse-momentum interval $2<p_{\rm T}<24$ GeV/$c$. Their production yields relative to the $\mathrm{D_{s}^{+}}$ ground-state yield were found to be compatible between minimum-bias and high-multiplicity collisions, as well as with previous measurements in ${\rm e}^{\pm}$p and ${\rm e^+ e^-}$ collisions. The measured $\mathrm{D_{s1}^+/D_{s}^{+}}$ and $\mathrm{D_{s2}^{*+}/D_{s}^{+}}$ yield ratios are described by statistical hadronization models and can be used to tune the parameters governing the production of excited charm-strange hadrons in Monte Carlo generators, such as PYTHIA 8.

4 data tables

$\mathrm{D_{s1}}^{+}$ x BR($\mathrm{D_{s1}}^{+} \rightarrow \mathrm D^{*+}$ $\mathrm K^{0}_{S})$ / $\mathrm{D_{s}^{+}}$ ratio at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the average charged particle multiplicity

$\mathrm{D_{s2}}^{*+}$ x BR($\mathrm{D_{s2}}^{*+} \rightarrow \mathrm D^{+}$ $\mathrm K^{0}_{S})$ / $\mathrm{D_{s}^{+}}$ ratio at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the average charged particle multiplicity

$\mathrm{D}_{s1}^{+}$ / $\mathrm{D}_{s}^{+}$ ratio at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV BR = (22 $\pm$ 2)%, branching ratio of $\mathrm{D}_{s1}^{+}\rightarrow\mathrm D^{*+} \mathrm K^{0}_{S}$ decay computed from RQM predictions and ratio of the BRs between the two possible final charged states.

More…

Measurement of f$_{1}$(1285) production in pp collisions at $\mathbf{\sqrt{{\textit s}}}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 866 (2025) 139562, 2025.
Inspire Record 2829849 DOI 10.17182/hepdata.158601

This study presents the first measurement of the f$_{1}$(1285) resonance using the ALICE detector in inelastic proton-proton collisions at a center-of-mass energy of 13 TeV. The resonance is reconstructed at midrapidity ($|y| <$ 0.5) through the hadronic decay channel f$_{1} (1285) \rightarrow \mathrm{K^{0}_{S} K^{\pm}\pi^{\mp}}$. Key measurements include the determination of its mass, transverse-momentum integrated yield, and average transverse momentum. Additionally, the ratio of the transverse-momentum integrated yield of f$_{1}$(1285) to pion is compared with calculations from the canonical statistical hadronization model. The model calculation, assuming a zero total strangeness content for f$_{1}$(1285), reproduces the data within 1$\sigma$ deviation, shedding light on the quark composition of f$_{1}$(1285).

2 data tables

Mass of f$_{1}$ meson measured in pp collisions at $\sqrt{s}$ = 13 TeV.

$p_{\rm T}$-distributions of f$_{1}$ meson measured in pp collisions at $\sqrt{s}$ = 13 TeV.


Coherent J/$\psi$ photoproduction at midrapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 871 (2025) 139952, 2025.
Inspire Record 2829848 DOI 10.17182/hepdata.166012

The coherent J/$ψ$ photoproduction cross section is measured for the first time at midrapidity in peripheral to semicentral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. The centrality differential cross section ${\rm d} σ/ {\rm d}y$ is reported for the centrality range 40-90%, together with the doubly-differential cross section ${\rm d}^2 σ/{\rm d}y {\rm d} p_{\rm T}$, extracted in two peripheral centrality classes. The J/$ψ$ mesons are reconstructed in the dielectron channel, in the rapidity interval $|y| < 0.9$ using the ALICE central barrel detectors. The J/$ψ$ cross section at midrapidity is statistically compatible to the earlier ALICE measurement at forward rapidity and at the same centre-of-mass energy, and shows only a mild centrality dependence over the covered range. Several sets of theoretical calculations taking into account the hadronic overlap in the collisions but ignoring possible final-state effects from a hot expanding medium are found to give a fairly good description of the current measurements within uncertainties.

4 data tables

Coherent J/$\psi$ cross section as a function of the number of participant nucleons at midrapidity in Pb-Pb collisions at $\sqrt(s_{NN})$ = 5.02 TeV.

Ratio of coherent J/$\psi$ cross section between peripheral and ultra peripheral collisions as a function of the number of participant nucleons at midrapidity in Pb-Pb collisions at $\sqrt(s_{NN})$ = 5.02 TeV.

Coherent J/$\psi$ cross section as a function of $p_T$ at midrapidity in 50-70% Pb-Pb collisions at $\sqrt(s_{NN})$ = 5.02 TeV. Data points with only a lower error bar indicate 95% CL values.

More…

Higher-order symmetry plane correlations in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 111 (2025) 064913, 2025.
Inspire Record 2825788 DOI 10.17182/hepdata.158644

The correlations between event-by-event fluctuations of symmetry planes are measured in Pb--Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV recorded by the ALICE detector at the Large Hadron Collider. This analysis is conducted using the Gaussian Estimator technique, which is insensitive to biases from correlations between different flow amplitudes. The study presents, for the first time, the centrality dependence of correlations involving up to five different symmetry planes. The correlation strength varies depending on the harmonic order of the symmetry plane and the collision centrality. Comparisons with measurements from lower energies indicate no significant differences within uncertainties. Additionally, the results are compared with hydrodynamic model calculations. Although the model predictions provide a qualitative explanation of the experimental results, they overestimate the data for some observables. This is particularly true for correlators that are sensitive to the non-linear response of the medium to initial-state anisotropies in the collision system. As these new correlators provide unique information -- independent of flow amplitudes -- their usage in future model developments can further constrain the properties of the strongly-interacting matter created in ultrarelativistic heavy-ion collisions.

33 data tables

Centrality dependence of $\langle\cos[6(\Psi_3-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

Centrality dependence of $\langle\cos[4(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

Centrality dependence of $\langle\cos[8(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

More…

Multiplicity-dependent jet modification from di-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 03 (2025) 194, 2025.
Inspire Record 2826253 DOI 10.17182/hepdata.157587

Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at ${\sqrt{{\textit s}}}=13$~TeV. The correlation functions are measured as a function of the relative azimuthal angle $\Delta\varphi$ and the pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum range $1 < p_{\rm T} < 8$ GeV/$c$. Near-side ($|\Delta\varphi|<1.3$) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation ($|\Delta\eta|<1.8$), while the per-trigger associated near-side yields are extracted for the short-range correlations ($|\Delta\eta|<1.3$). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region ($p_{\rm T} < 3$ GeV/$c$). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.

40 data tables

Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $1.0 < p_\mathrm{T, assoc} < p_\mathrm{T, trig} < 2.0$ GeV/$c$. The multiplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).

Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, trig} < 3.0$ GeV/$c$ and $1.0 < p_\mathrm{T, assoc} < 2.0$ GeV/$c$. The mulitplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).

Multiplicity dependence of the near-side width $\sigma$ in pp collisions at $\sqrt{s_{\rm NN}} = 13$ TeV. Obtained in transverse momentum intervals $2.0 < p_\mathrm{T, assoc} < p_\mathrm{T, trig} < 3.0$ GeV/$c$. The multiplicity is estimated with midrapidity multiplicity estimator ($|\eta|<1.0,\,p_\mathrm{T}>0.2$ GeV/$c$).

More…

J/$\psi$-hadron correlations at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 07 (2025) 023, 2025.
Inspire Record 2825965 DOI 10.17182/hepdata.158645

We report on the measurement of inclusive, non-prompt, and prompt J/$ψ$-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of $13~\text{TeV}$. The correlations are studied at midrapidity ($|y| < 0.9$) in the transverse momentum ranges $p_{\rm T} < 40~\text{GeV}/c$ for the J/$ψ$ and $0.15 < p_{\rm T} < 10~\text{GeV}/c$ and $|η|<0.9$ for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of $L_{\text{int}} = 34~\text{nb}^{-1}$ and $L_{\text{int}} = 6.9~\text{pb}^{-1}$, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of $E = 4$ and $9~\text{GeV}$ in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of $L_{\text{int}} = 0.9~\text{pb}^{-1}$ and $L_{\text{int}} = 8.4~\text{pb}^{-1}$, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/$ψ$ trigger are presented as a function of the J/$ψ$ and associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.

72 data tables

Near side asociated charged particle yield per trigger in the range $0.15<p_T<1$ GeV/$c$ for inclusive J/$\psi$, as a function of $p_T$, using the MB and EMCal event samples.

Near side asociated charged particle yield per trigger in the range $0.15<p_T<1$ GeV/$c$ for inclusive J/$\psi$, as a function of $p_T$, using the HM event samples.

Near side asociated charged particle yield per trigger in the range $0.15<p_T<1$ GeV/$c$ for prompt J/$\psi$, as a function of $p_T$, using the MB and EMCal event samples.

More…

Exploring nuclear structure with multiparticle azimuthal correlations at the LHC

The ALICE collaboration Collaboration, ALICE ; Acharya, Shreyasi ; Agarwal, Apar ; et al.
Phys.Lett.B 869 (2025) 139855, 2025.
Inspire Record 2825785 DOI 10.17182/hepdata.165380

Details of the nuclear structure of $^{\rm 129}$Xe, such as the quadrupole deformation and the nuclear diffuseness, are studied by extensive measurements of anisotropic-flow-related observables in Xe--Xe collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{_{\mathrm{NN}}}}~=~5.44$ TeV with the ALICE detector at the LHC. The results are compared with those from Pb--Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}~=~5.02$ TeV for a baseline, given that the $^{\rm 208}$Pb nucleus exhibits a very weak deformation. Furthermore, comprehensive comparisons are performed with a state-of-the-art hybrid model using IP-Glasma+MUSIC+UrQMD. It is found that among various IP-Glasma+MUSIC+UrQMD calculations with different values of nuclear parameters, the one using a nuclear diffuseness parameter of $a_0=0.492$ and a nuclear quadrupole deformation parameter of $β_2=0.207$ provides a better description of the presented flow measurements. These studies represent the first systematic exploration of nuclear structure at TeV energies, utilizing a comprehensive set of anisotropic flow observables. The measurements serve as a critical experimental benchmark for rigorously testing the interplay between nuclear structure inputs and heavy-ion theoretical models.

22 data tables

Charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.

Charged particle $v_2\{4\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.

Ratio between Xe$-$Xe and Pb$-$Pb charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality.

More…

Multiplicity dependent $J/\psi$ and $\psi(2S)$ production at forward and backward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 112 (2025) L051103, 2025.
Inspire Record 2825244 DOI 10.17182/hepdata.155565

The $J/\psi$ and $\psi(2S)$ charmonium states, composed of $c\bar{c}$ quark pairs and known since the 1970s, are widely believed to serve as ideal probes to test quantum chromodynamics in high-energy hadronic interactions. However, there is not yet a complete understanding of the charmonium-production mechanism. Recent measurements of $J/\psi$ production as a function of event charged-particle multiplicity at the collision energies of both the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) show enhanced $J/\psi$ production yields with increasing multiplicity. One potential explanation for this type of dependence is multiparton interactions (MPI). We carry out the first measurements of self-normalized $J/\psi$ yields and the $\psi(2S)$ to $J/\psi$ ratio at both forward and backward rapidities as a function of self-normalized charged-particle multiplicity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. In addition, detailed {\sc pythia} studies tuned to RHIC energies were performed to investigate the MPI impacts. We find that the PHENIX data at RHIC are consistent with recent LHC measurements and can only be described by {\sc pythia} calculations that include MPI effects. The forward and backward $\psi(2S)$ to $J/\psi$ ratio, which serves as a unique and powerful approach to study final-state effects on charmonium production, is found to be less dependent on the charged-particle multiplicity.

6 data tables

Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm before subtraction

Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm after subtraction

Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for opposite arms

More…

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 573, 2025.
Inspire Record 2823281 DOI 10.17182/hepdata.158356

A search is presented for a heavy scalar ($H$) or pseudo-scalar ($A$) predicted by the two-Higgs-doublet models, where the $H/A$ is produced in association with a top-quark pair ($t\bar{t}H/A$), and with the $H/A$ decaying into a $t\bar{t}$ pair. Events are selected requiring exactly one or two opposite-charge electrons or muons. Data-driven corrections are applied to improve the modelling of the $t\bar{t}$+jets background in the regime with high jet and $b$-jet multiplicities. These include a novel multi-dimensional kinematic reweighting based on a neural network trained using data and simulations. An $H/A$-mass parameterised graph neural network is trained to optimise the signal-to-background discrimination. In combination with the previous search performed by the ATLAS Collaboration in the multilepton final state, the observed upper limits on the $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ production cross-section at 95% confidence level range between 14 fb and 5.0 fb for an $H/A$ with mass between 400 GeV and 1000 GeV, respectively. Assuming that both the $H$ and $A$ contribute to the $t\bar{t}t\bar{t}$ cross-section, $\tanβ$ values below 1.7 or 0.7 are excluded for a mass of 400 GeV or 1000 GeV, respectively. The results are also used to constrain a model predicting the pair production of a colour-octet scalar, with the scalar decaying into a $t\bar{t}$ pair.

23 data tables

Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 1L region with $\geq 10$ jets and four $b$-tagged jets. The fit is performed under the background-only hypothesis.

Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the 2LOS region with $\geq8$ jets and $\geq 4$ $𝑏$-tagged jets. The fit is performed under the background-only hypothesis.

Post-fit distribution of the GNN score evaluated with $m_{H/A}$ = 400 GeV in the validation region in the 1L region with $\geq 10$ jets. These regions do not enter the fit. The post-fit background prediction is obtained using the post-fit nuisance parameters from the background-only fit in the control and signal regions.

More…