K+p and K+d total cross sections were measured in the momentum range 0.57-1.16 GeV/c using a secondary, separated kaon beam of the Lawrence Berkeley Laboratory Bevatron and conventional transmission-counter techniques. No evidence was found for structure in the cross section of either reaction as previously indicated near 0.7 GeV/c.
No description provided.
The results presented in this paper are obtained from an analysis of bubble-chamber pictures of K−d interactions at an incident K− momentum of 5.5 GeV/c. Generally, the quasitwo-body final states are produced peripherally, with a small backward peak occurring in some of the final states. The final states Σ−ω, Σ−ρ0, and Σ−φ appear to be produced primarily by vector-meson exchange. In the final state Λ(1520)π− the decay distributions of the Λ(1520) hyperon are found to be consistent with a vector-exchagne production process with M2 coupling at the nucleon vertex. The predictions of the independent-quark model and of other symmetry schemes, namely that the forward cross sections for Σ−ρ0, Σ−ω, Σ−φ production be in the ratios 1: 1: 2, are not inconsistent with our experimental values.
No description provided.
FRACTIONAL FORWARD HYPERON CROSS SECTION AFTER BACKGROUND SUBTRACTION.
No description provided.
We have measured the total inelastic cross section (σinel) and charged-particle multiplicities obtained in pp collisions at 405 GeV/c. The data are from a preliminary 12 000-picture bubble-chamber exposure. We find σinel=32.8±1.0 mb; the low moments of the multiplicity distribution for negative particles are 〈n−〉=3.50±0.07, D−=2.37±0.05, f2−=2.1±0.2, and f3−=0.1±0.9. We also present updated results at 102 GeV/c.
SUPERCEDES PRELIMINARY RESULTS IN J. W. CHAPMAN ET AL., PRL 29, 1686 (1972).
No description provided.
FIT TO ELASTIC DIFFERENTIAL CROSS SECTION FOR 0.05 < -T < 0.7 GEV**2.
The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.
None
APPROXIMATELY CONSTANT MOMENTUM TRANSFER.
We present measurements of the invariant cross section for the inclusive reaction p+p→p+X in the region 0.14<|t|<0.38 GeV2, 100<s<750 GeV2, and 0.80<x<0.93.
The cross sections are fitted by the formula CONST(C=A)*EXP(SLOPE*T)*(1+CO NST(C=B)/SQRT(S)).
Results are presented of a wire-spark-chamber spectrometer measurement of the differential cross section for π−p elastic scattering at 14.15 GeV/c. The region covered in the square of the four-momentum transfer, t, is 0.01<−t<0.78 (GeV/c)2. The cross section is found to obey very nearly a simple exponential t dependence with no evidence of structure. A fit to the data of the form dσdt∝exp(bt+ct2) on the range 0.05<−t<0.78 (GeV/c)2 (i.e., above the region affected by Coulomb scattering) yields b=8.26±0.10 (GeV/c)2 and c=1.01±0.17 (GeV/c)−4. Considering the results of previous measurements, b≃11 (GeV/c)−2 for −t<0.05 (GeV/c)2, a deviation from the simple exponential near −t≃0.05 (GeV/c)2 is indicated.
No description provided.
Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.
We observe substantial B-meson production in π−d interactions at 7 GeVc. The observed mass and width of the B are 1217 ± 12 MeV and 115 ± 40 MeV, respectively. We find that the B is produced largely in quasi-two-body final states, and, on the basis of the observed Δ0B production cross section, we expect a large πA 2B coupling which should be observable in other reactions.
No description provided.
The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.
Measured charged current total cross section.
Measured charged current total cross section.