Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 036, 2012.
Inspire Record 1087342 DOI 10.17182/hepdata.58967

The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pt = 35-150 GeV/c in proton-proton collisions at sqrt(s) = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2<|eta|<4.7, and central jets within the |eta|<2.8 range. The double differential cross sections with respect to pt and eta are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.

0 data tables match query

Measurement of the ratio of inclusive jet cross sections using the anti-kt algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 072006, 2014.
Inspire Record 1298810 DOI 10.17182/hepdata.68020

Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.

0 data tables match query

Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at sqrt(s) = 7 TeV and first determination of the strong coupling constant in the TeV range

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2604, 2013.
Inspire Record 1230937 DOI 10.17182/hepdata.62093

A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, <pT[1,2]>, of the two leading jets in the event. The data sample was collected during 2011 at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 inverse femtobarns. The strong coupling constant at the scale of the Z boson mass is determined to be alphaS[MZ] = 0.1148 +/- 0.0014 (exp.) +/- 0.0018 (PDF) +/- 0.0050 (theory), by comparing the ratio in the range 0.42 < <pT[1,2]> < 1.39 TeV to the predictions of perturbative QCD at next-to-leading order. This is the first determination of alphaS[MZ] from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant. No deviation from the expected behaviour is observed.

0 data tables match query