Measurement of the incoherent $\gamma d \to \phi p n$ photoproduction near threshold

The LEPS collaboration Chang, W.C. ; Miyabe, M. ; Nakano, T. ; et al.
Phys.Lett.B 684 (2010) 6-10, 2010.
Inspire Record 825381 DOI 10.17182/hepdata.54640

We report measurements of differential cross sections and decay asymmetries of incoherent $\phi$-meson photoproduction from the deuteron at forward angles using linearly polarized photons at \Eg=1.5-2.4 GeV. The nuclear transparency ratio for the deuteron shows a large suppression, and is consistent with the A-dependence of the ratio observed in a previous measurement with nuclear targets. The reduction for the deuteron cannot be adequately explained in term of isospin asymmetry. The present results suggest the need of refining our understanding of the $\phi$-N interaction within a nucleus.

7 data tables

Distribution of DSIG/DT from incoherent reaction GAMMA DEUT --> PHI P N for the incident photon energy ranges 1.57 to 1.67 and 1.67 to 1.77 GeV.

Distribution of DSIG/DT from incoherent reaction GAMMA DEUT --> PHI P N for the incident photon energy ranges 1.77 to 1.87 and 1.87 to 1.97 GeV.

Distribution of DSIG/DT from incoherent reaction GAMMA DEUT --> PHI P N for the incident photon energy ranges 1.97 to 2.07 and 2.07 to 2.17 GeV.

More…

Near-threshold Lambda(1520) production by the gamma p -> K+Lambda(1520) reaction at forward K+ angles

The LEPS collaboration Kohri, H. ; Ahn, D.S. ; Ahn, J.K. ; et al.
Phys.Rev.Lett. 104 (2010) 172001, 2010.
Inspire Record 821817 DOI 10.17182/hepdata.55726

Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump structure was found at W=2.11 GeV in the cross sections. The bump is not well reproduced by theoretical calculations introducing a nucleon resonance with J<=3/2. This result suggests that the bump might be produced by a nucleon resonance possibly with J>=5/2 or by a new reaction process, for example an interference effect with the phi photoproduction having a similar bump structure in the cross sections.

2 data tables

Differential cross sections as a function of the photon energy in four cos(theta) regions. The errors shown are statistcial only.

Photon beam asymmetries. The errors shown are statistical only.


Near-threshold photoproduction of $\Lambda(1520)$ from protons and deuterons

Muramatsu, N. ; Chen, J.Y. ; Chang, W.C. ; et al.
Phys.Rev.Lett. 103 (2009) 012001, 2009.
Inspire Record 817890 DOI 10.17182/hepdata.22937

Photoproduction of $\Lambda$(1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8/LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward K$^{+/0}$ angles. This suggests the importance of the contact term, which coexists with t-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K$^+$ angles.

4 data tables

The measured differential cross sections from the liquid hydrogen target, protons, as a function the K+ polar angle.

The measured differential cross sections from the liquid hydrogen target, protons, as a function the photon energy at forward K+ polar angles of 19-43 degrees .

The measured of differential cross section at backward K+/K0 polar angles of 120-150 degrees as a function of photon energy from the liquid hydrogen target, protons, and liquid deuterium target, deuterons.

More…

Photoproduction of Lambda(1405) and Sigma^{0}(1385) on the proton at E_\gamma = 1.5-2.4 GeV

Niiyama, M. ; Fujimura, H. ; Ahn, D.S. ; et al.
Phys.Rev.C 78 (2008) 035202, 2008.
Inspire Record 786670 DOI 10.17182/hepdata.50883

Differential cross sections for $\gamma p \to K^+\Lambda(1405)$ and $\gamma p \to K^+\Sigma^0(1385)$ reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and the angular range of $0.8<\cos(\Theta)<1.0$ for the $K^+$ scattering angle in the center-of-mass system. This data is the first measurement of the $\Lambda(1405)$ photoproduction cross section. The lineshapes of \LamS measured in $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$ decay modes were different with each other, indicating a strong interference of the isospin 0 and 1 terms of the $\Sigma\pi$ scattering amplitudes. The ratios of \LamS production to \SigS production were measured in two photon energy ranges: near the production threshold ($1.5<E_\gamma<2.0$ GeV) and far from it ($2.0 <E_\gamma<2.4$ GeV). The observed ratio decreased in the higher photon energy region, which may suggest different production mechanisms and internal structures for these hyperon resonances.

2 data tables

Cross section for LAMBDA(1405) production.

Cross section for SIGMA(1385)0 production.


Measurement of the $\vec{\gamma} p \to K^+ \Lambda$ Reaction at Backward Angles

The LEPS collaboration Hicks, K. ; Mibe, T. ; Sumihama, M. ; et al.
2007.
Inspire Record 756925 DOI 10.17182/hepdata.25090

Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.

5 data tables

Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.

Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.

Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.

More…

Forward coherent Phi-meson photoproduction from deuterons near threshold.

Chang, W.C. ; Horie, K. ; Shimizu, S. ; et al.
Phys.Lett.B 658 (2008) 209-215, 2008.
Inspire Record 747086 DOI 10.17182/hepdata.26965

Differential cross sections and decay asymmetries for coherent $\phi$-meson photoproduction from deuterons were measured for the first time at forward angles by linearly polarized photons at $E_{\gamma}$= 1.5-2.4 GeV. With the elimination of isovector unnatural-parity $\pi$-meson exchange in the interaction with isoscalar deuteron target, this reaction is expected to explore natural-parity Pomeron dynamics at low energies. Our measurements show that the cross sections at zero degrees increase steadily with photon energy and the decay asymmetries demonstrate a complete dominance of natural-parity exchange processes. Nevertheless the deduced cross sections of $\phi$-mesons from nucleons contributed by isoscalar t-channel exchange processes are mostly underpredicted by conventional Pomeron model.

11 data tables

Differential cross section DSIG/DT for photon energy 1.57 to 1.67 GeV.

Differential cross section DSIG/DT for photon energy 1.67 to 1.77 GeV.

Differential cross section DSIG/DT for photon energy 1.77 to 1.87 GeV.

More…

Differential cross section and photon beam asymmetry for the gamma(pol.) n --> K+ Sigma- reaction at e(gamma) = 1.5-GeV - 2.4-GeV.

Kohri, H. ; Ahn, D.S. ; Ahn, J.K. ; et al.
Phys.Rev.Lett. 97 (2006) 082003, 2006.
Inspire Record 709901 DOI 10.17182/hepdata.41825

Differential cross sections and photon beam asymmetries have been measured for the gamma n -> K+ Sigma- and gamma p -> K+ Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of Egamma=1.5-2.4 GeV at 0.6<cosTheta<1. The cross section ratio of sigma(K+Sigma-)/sigma(K+Sigma0), expected to be 2 on the basis of the isospin 1/2 exchange, is found to be close to 1. For the K+Sigma- reaction, large positive asymmetries are observed indicating the dominance of the K*-exchange. A large difference between the asymmetries for the K+Sigma- and K+Sigma0 reactions can not be explained by simple theoretical considerations.

4 data tables

Differential cross section for GAMMA P --> K+ SIGMA0.. Errors are statistical only.

Photon beam asymmetry for GAMMA N --> K+ SIGMA-.. Errors are statistical only.

Photon beam asymmetry for GAMMA P --> K+ SIGMA0.. Errors are statistical only.

More…

Cross-section for forward J / psi production in p anti-p collisions at S = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 092001, 2002.
Inspire Record 603674 DOI 10.17182/hepdata.22217

The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.

2 data tables

The integrated cross section for J/PSI --> MU+ MU- decay.

Cross section as a function of PT. Statistical errors only.


Measurement of the B+ total cross-section and B+ differential cross-section d sigma / dp(T) in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 65 (2002) 052005, 2002.
Inspire Record 567345 DOI 10.17182/hepdata.42889

We present measurements of the B+ meson total cross section and differential cross section $d\sigma/ dp_T$. The measurements use a $98\pm 4$ pb^{-1} sample of $p \bar p$ collisions at $\sqrt{s}=1.8$ TeV collected by the CDF detector. Charged $B$ meson candidates are reconstructed through the decay $B^{\pm} \to J/\psi K^{\pm}$ with $J/\psi\to \mu^+ \mu^-$. The total cross section, measured in the central rapidity region $|y|&lt;1.0$ for $p_T(B)>6.0$ GeV/$c$, is $3.6 \pm 0.6 ({\rm stat} \oplus {\rm syst)} \mu$b. The measured differential cross section is substantially larger than typical QCD predictions calculated to next-to-leading order.

2 data tables

Measured differential cross section for B+ production. The first (DSYS) error is the PT dependent systematic error and the second is the full correlated systematic error.

The total integrated B+ meson cross section. The first error is the combined statistical and PT dependent systematic error. The DSYS error is the fully correlated systematic error.


Cross-section and heavy quark composition of gamma + muon events produced in p anti-p collisions

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 012003, 2002.
Inspire Record 557647 DOI 10.17182/hepdata.42881

We present a measurement of the cross section and the first measurement of the heavy flavor content of associated direct photon + muon events produced in hadronic collisions. These measurements come from a sample of 1.8 TeV ppbar collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily due to Compton scattering process charm+gluon -> charm+photon, with the final state charm quark producing a muon. The cross section for events with a photon transverse momentum between 12 and 40 GeV/c is measured to be 46.8+-6.3+-7.5 pb, which is two standard deviations below the most recent theoretical prediction. A significant fraction of the events in the sample contain a final-state bottom quark. The ratio of charm to bottom production is measured to be 2.4+-1.2, in good agreement with QCD models.

2 data tables

The measured photon-muon cross section.

Measured cross section in the PT interval 12-40 GeV.