Date

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044910, 2013.
Inspire Record 1222333 DOI 10.17182/hepdata.61925

In this paper measurements are presented of $\rm \pi$$^+$, $\rm \pi$$^-$, K$^+$, K$^-$, p and $\overline{\rm p}$ production at mid-rapidity < 0.5, in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV as a function of centrality. The measurement covers the transverse momentum ($p_{\rm T}$) range from 100, 200, 300 MeV/$c$ up to 3, 3, 4.6 GeV/$c$, for $\rm\pi$, K, and p respectively. The measured $p_{\rm T}$ distributions and yields are compared to expectations based on hydrodynamic, thermal and recombination models. The spectral shapes of central collisions show a stronger radial flow than measured at lower energies, which can be described in hydrodynamic models. In peripheral collisions, the $p_{\rm T}$ distributions are not well reproduced by hydrodynamic models. Ratios of integrated particle yields are found to be nearly independent of centrality. The yield of protons normalized to pions is a factor ~1.5 lower than the expectation from thermal models.

57 data tables

pT-differential invariant yield of pion+ and pion- for centrality 0-5%. These data are also available from http://hepdata.cedar.ac.uk/view/ins1126966.

pT-differential invariant yield of pion+ and pion- for centrality 5-10%.

pT-differential invariant yield of pion+ and pion- for centrality 10-20%.

More…

Pion, Kaon, and Proton Production in Central Pb--Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 252301, 2012.
Inspire Record 1126966 DOI 10.17182/hepdata.59720

In this Letter we report the first results on $\pi^\pm$, K$^\pm$, p and $\mathrm {p\overline{p}}$ production at mid-rapidity ($\left|y\right|<0.5$) in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured by the ALICE experiment at the LHC. The $p_{\rm T}$ distributions and yields are compared to previous results at $\sqrt{s_{\rm NN}}$ = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with $\sqrt{s_{\rm NN}}$, which in hydrodynamic models is expected as a consequence of the increasing particle density. While the ${\rm K}/\pi$ ratio is in line with predictions from the thermal model, the ${\rm p}/\pi$ ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.

4 data tables

Transverse momentum distribution for positve and negative pions.

Transverse momentum distribution for positve and negative kaons.

Transverse momentum distribution for positve and negative protons.

More…

J/psi Production as a Function of Charged Particle Multiplicity in pp Collisions at sqrt{s} = 7 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 712 (2012) 165-175, 2012.
Inspire Record 1088833 DOI 10.17182/hepdata.38163

The ALICE collaboration reports the measurement of the inclusive J/psi yield as a function of charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV at the LHC. J/psi particles are detected for p_t > 0, in the rapidity interval |y| < 0.9 via decay into e+e-, and in the interval 2.5 < y < 4.0 via decay into mu+mu- pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN_{J/psi}/dy)/ with (dN_{ch}/deta)/ is observed in both rapidity ranges, where dN_{ch}/deta is measured within |eta| < 1 and p_t > 0. In the highest multiplicity interval with = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y < 4 (8 at |y| < 0.9) is observed.

2 data tables

The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-electron channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.

The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-muon channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.


Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Kaon and Pion Production in Central Au+Au Collisions at \sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 687 (2010) 36-41, 2010.
Inspire Record 836865 DOI 10.17182/hepdata.89451

Invariant pT spectra and rapidity densities covering a large rapidity range(-0.1 < y < 3.5) are presented for $\pi^{\pm}$ and $K^{\pm}$ mesons from central Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. The mid-rapidity yields of meson particles relative to their anti-particles are found to be close to unity ($\pi^-/\pi^+ \sim 1$, $K^-/K^+ \sim 0.85$) while the anti-proton to proton ratio is $\bar{p}/p \sim 0.49$. The rapidity dependence of the $\pi^-/\pi^+$ ratio is consistent with a small increase towards forward rapidities while the $K^-/K^+$ and $\bar{p}/p$ ratios show a steep decrease to $\sim$ 0.3 for kaons and 0.022 for protons at $y\sim 3$. It is observed that the kaon production relative to its own anti-particle as well as to pion production in wide rapidity and energy ranges shows an apparent universal behavior consistent with the baryo-chemical potential, as deduced from the $\bar{p}/p$ ratio, being the driving parameter.

40 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.2-0.0$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.0-0.2$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.7-0.9$ for $0-10$% central

More…

Nuclear stopping and rapidity loss in Au+Au collisions at sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 677 (2009) 267-271, 2009.
Inspire Record 810481 DOI 10.17182/hepdata.89449

Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0

16 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.4-0.9$

More…

Charged meson rapidity distributions in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 94 (2005) 162301, 2005.
Inspire Record 647076 DOI 10.17182/hepdata.89445

We have measured rapidity densities dN/dy of pions and kaons over a broad rapidity range (-0.1 < y < 3.5) for central Au+Au collisions at sqrt(snn) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+) and 242 +/- 4 +/- 19 (K-). The systematics of the strange to non--strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau--Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.

60 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=-0.1-0.0$ for $0-5$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.0-0.1$ for $0-5$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0.4-0.6$ for $0-5$% central

More…

Nuclear stopping in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 93 (2004) 102301, 2004.
Inspire Record 636579 DOI 10.17182/hepdata.89443

Transverse momentum spectra and rapidity densities, dN/dy, of protons, anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at this energy exhibit a high degree of transparency and that the linear scaling of rapidity loss with rapidity observed at lower energies is broken. The energy loss per participant nucleon is estimated to be 73 +- 6 GeV.

2 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . NaN values means no observation.

$\frac{\mathrm{d}N}{\mathrm{d}y}$ versus $y$ for $\mathrm{p}$,$\overline{\mathrm{p}}$,$\mathrm{p}-\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ . The correction for the $\Lambda$ contribution is not straight forward since BRAHMS does not measure the $\Lambda$s and PHENIX and STAR only measures the $\Lambda$s at mid-rapidity! If one assumes that the mid-rapidity estimated in the paper of $$R=\frac{\Lambda-\bar{\Lambda}}{\mathrm{p}-\bar{\mathrm{p}}} = \frac{\Lambda}{\mathrm{p}} = \frac{\bar{\Lambda}}{\bar{\mathrm{p}}} = 0.93\pm 0.11(\mathrm{stat})\pm 0.25(\mathrm{syst}) $$ and the BRAHMS "acceptance factor" of $A=0.53\pm 0.05$ which includes both that only 64% decays to protons and that some are rejected by the requirement of the track to point back to the IP. The corrected $\mathrm{p}$ ($\bar{\mathrm{p}}$ or net-$\mathrm{p}$) is then : $$\left.\frac{\mathrm{d}N}{\mathrm{d}y}\right|_{\mathrm{corrected}} = \frac{\mathrm{d}N}{\mathrm{d}y}(1/(1+RA))= \frac{\mathrm{d}N}{\mathrm{d}y}\left(0.67\pm 0.05(\mathrm{stat})\pm 0.11(\mathrm{syst})\right)$$ Which can be used at all rapidities if one believes that R is constant. The fact that net-$\mathrm{K}=\mathrm{K}^{+}-\mathrm{K}^{-}$ follows net-$\mathrm{p}$ (see fx. talk by Djamel Ouerdane at QM04), seems to indicate that the net-$\Lambda$ follow the net-$\mathrm{p}$ trend and the correction is reasonable.


Strange meson enhancement in Pb Pb collisions.

The NA44 collaboration Bearden, I. ; Bøggild, H. ; Boissevain, J. ; et al.
Phys.Lett.B 471 (1999) 6-12, 1999.
Inspire Record 504074 DOI 10.17182/hepdata.31360

The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.

4 data tables

Inverse slope paramters of the (1/MT)*DN/DMT distribution.

Rapidity distributions for K+ and K- production.. Statistical and systematic errors added in quadrature.

Rapidity distributions for PI+ and PI- production.. Statistical and systematic errors added in quadrature.

More…