Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Study of $J/\psi$ production and cold nuclear matter effects in $p$Pb collisions

The LHCb collaboration Aaij, R ; Adeva, B ; Adinolfi, M ; et al.
JHEP 02 (2014) 072, 2014.
Inspire Record 1251899 DOI 10.17182/hepdata.64876

The production of $J/\psi$ mesons with rapidity $1.5<y<4.0$ or $-5.0<y<-2.5$ and transverse momentum $p_\mathrm{T}<14 \mathrm{GeV}/c$ is studied with the LHCb detector in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$. The analysis is based on a data sample corresponding to an integrated luminosity of about $1.6 \mathrm{nb}^{-1}$. For the first time the nuclear modification factor and forward-backward production ratio are determined separately for prompt $J/\psi$ mesons and $J/\psi$ from $b$-hadron decays. Clear suppression of prompt $J/\psi$ production with respect to proton-proton collisions at large rapidity is observed, while the production of $J/\psi$ from $b$-hadron decays is less suppressed. These results show good agreement with available theoretical predictions. The measurement shows that cold nuclear matter effects are important for interpretations of the related quark-gluon plasma signatures in heavy-ion collisions.

9 data tables

Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of transverse momentum in the FORWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.

Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of transverse momentum in the BACKWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.

Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of rapidity in the FORWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.

More…