Revised analysis of $\Sigma$ beam asymmetry for $\eta$ photoproduction on the free proton reveals a resonant structure at $W\sim 1.69$ GeV. Comparison of experimental data with multipole decomposition based on the E429 solution of the SAID partial wave analysis and including narrow states, suggests a narrow ($\Gamma \leq 15$ MeV) resonance. Possible candidates are $P_{11}$, $P_{13}$, or $D_{13}$ resonances. The result is considered in conjunction with the recent evidence for a bump-like structure at $W\sim 1.67 - 1.68$ GeV in quasi-free $\eta$ photoproduction on the neutron.
Measured beam asymmetry for a mean scattering angle of 43 degrees.
Measured beam asymmetry for a mean scattering angle of 65 degrees.
Measured beam asymmetry for a mean scattering angle of 85 degrees.
The beam asymmetry, $\Sigma$, was measured at ELSA in the reaction $\vec \gamma p \to \eta p$ using linearly polarised tagged photon beams, produced by coherent bremsstrahlung off a diamond. The crystal was oriented to provide polarised photons in the energy range $E_\gamma = 800$ to 1400 MeV with the maximum polarisation of $P_\gamma = 49$ % obtained at 1305 MeV. Both dominant decay modes of the $\eta$ into two photons and $3\pi^0$ were used to extract the beam asymmetry from the azimuthal modulation of the cross section. The measurements cover the angular range $\Theta_\text{cm}\simeq 50$ -- 150 degrees. Large asymmetries up to 80 % are observed, in agreement with a previous measurement. The eta-MAID model and the Bonn--Gatchina partial wave analysis describe the measurements, but the required partial waves differ significantly.
Photon asymmetry for eta photoproduction at incident photon energy of 850 MeV.
Photon asymmetry for eta photoproduction at incident photon energy of 950 MeV.
Photon asymmetry for eta photoproduction at incident photon energy of 1050 MeV.
Measurements of the analysing power for the p(pol)p --> ppeta reaction have been performed in the close-to-threshold energy region at beam momenta of p_{beam}=2.010 and 2.085 GeV/c, corresponding to excess energies of Q=10 and 36 MeV, respectively. The determined analysing power is essentially consistent with zero implying that the eta meson is produced predominantly in the s-wave at both excess energies. The angular dependence of the analysing power, combined with the hitherto determined isospin dependence of the total cross section for the eta meson production in nucleon-nucleon collisions, reveal a statistically significant indication that the excitation of the nucleon to the S_{11}(1535) resonance, the process which intermediates the production of the eta meson, is predominantly due to the exchange of the pi meson between the colliding nucleons.
Analysing power measurements for excess energy 10 MeV.
Analysing power measurements for excess energy 36 MeV.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
The polarization of neutral Cascade and anti-Cascade hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. Our result of 9.7% for the neutral Cascade polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice our targeting angle. The polarization of the neutral anti-Cascade is measured for the first time and found to be consistent with zero. We also examine the dependence of polarization on transverse production momentum.
Measured polarizations as a function of transverse momentum.
We present new accurate measurements of the differential cross section $\sigma(\theta)$ and the proton analyzing power $A_{y}$ for proton-$^{3}$He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The $\sigma(\theta)$ distributions have been measured at $E_{p}$ = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of $A_{y}$ have been measured at $E_{p}$ = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a $3N$ potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``$A_{y}$ Puzzle'' known for the past 20 years in nucleon-deuteron elastic scattering.
The measured P-HE3 elastic differential cross section at proton energy 0.99MeV.
The measured P-HE3 elastic differential cross section at proton energy 1.59MeV.
The measured P-HE3 elastic differential cross section at proton energy 2.24MeV.
Differential cross sections and photon beam asymmetries have been measured for the gamma n -> K+ Sigma- and gamma p -> K+ Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of Egamma=1.5-2.4 GeV at 0.6
Differential cross section for GAMMA P --> K+ SIGMA0.. Errors are statistical only.
Photon beam asymmetry for GAMMA N --> K+ SIGMA-.. Errors are statistical only.
Photon beam asymmetry for GAMMA P --> K+ SIGMA0.. Errors are statistical only.
A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 < |t| < 0.032 ({\rm GeV}/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \simeq 0.003 ({\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.
Analysing power as a function of momentum transfer T. The first DSYS error is the systematic error, the second is the normalization error on the target polarization.
Differential cross sections and photon beam asymmetries for the gamma p rightarrow K+ Lambda and gamma p rightarrow K+ Sigma0 reactions have been measured in the photon energy range from 1.5 GeV to 2.4 GeV and in the angular range from Theta_{cm} = 0 to 60 of the K+ scattering angle in the center of mass system at the SPring-8/LEPS facility. The photon beam asymmetries for both the reactions have been found to be positive and to increase with the photon energy. The measured differential cross sections agree with the data measured by the CLAS collaboration at cosTheta_{cm}<0.9 within the experimental uncertainties, but the discrepancy with the SAPHIR data for the K+Lambda reaction is large at cosTheta_{cm}>0.9. In the K+Lambda reaction, the resonance-like structure found in the CLAS and SAPHIR data at W=1.96 GeV is confirmed. The differential cross sections at forward angles suggest a strong K-exchange contribution in the t-channel for the K+Lambda reaction, but not for the K+Sigma0 reaction.
Photon beam asymmetries for the two reactions as a function of CM angle for photon beam energy 1.55 GeV (W=1.947 GeV).
Photon beam asymmetries for the two reactions as a function of CM angle for photon beam energy 1.65 GeV (W=1.994 GeV).
Photon beam asymmetries for the two reactions as a function of CM angle for photon beam energy 1.75 GeV (W=2.041 GeV).
We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.
The single spin analyzing power for 3 T intervals.