The spin correlation parameter A oosk was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ⋍ 50°. At 0.88 GeV they complete our previous measurements from 45° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from gq CM = 28° (at lower energies) or θ CM = 18° (at higher energies) to θ CM > 90°. The shape of the angular distribution A oosk (pp) = ƒ(θ CM ) changes considerably between 1.8 and 2.4 GeV.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A ookk in pp elastic scattering was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ⋍ 50° and complete our previous measurements from 45° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A ookk (pp) = f ( θ CM ) changes considerably between in our energy region.
No description provided.
No description provided.
No description provided.
The spin dependent observables N 0s n ″ k , K 0s″s0 and D 0s″0k in pp elastic scattering were measured at 11 energies between 0.84 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The beam polarization was oriented in the vertical plane, the target polarization was oriented along the incident beam direction. Below 1 GeV the present data agree with previously existing measurements. Below 1.3 GeV they are compared with the predictions of the Saclay-Geneva phase shift analysis. The results will improve the phase shift analysis solutions and will contribute to their extensions towards higher energies. Together with our previous results the data allow a direct reconstruction of the pp elastic matrix over the energy region from 0.84 too 2.7 GeV.
No description provided.
No description provided.
No description provided.
Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.
S=19.667 GEV**2, U=-T-17.867 GEV**2.
S=19.91 GEV**2, U=-T-17.704 GEV**2.
S=18.74 GEV**2.
We have obtained a sample of 20 465 (2201) events in the channel pp→ ( Λ 0 K + )p at 50 (30) GeV/ c incident momentum with Geneva-Lausanne spectrometer at the CERN SPS. In this analysis we investigate: 1. (i) the production of N ∗ (I = 1 2 ) states in the mass region 1.6 ⩽ M ( Λ 0 K + ) ⩽ 2.6 GeV and momentum transfer 0.06 ⩽ | t | 1.0 (GeV/ c ) 2 , by studing the amplitudes and phases from a moment analysis of the decay angular distribution; 2. (ii) the contribution of the K-exchange Deck model for M ( Λ 0 K + < 2.22 GeV; 3. (iii) the double Regge exchange phenomenology for s Λ 0 K + > 5 GeV 2 and s Λ 0 K + p > 5 GeV 2 .
No description provided.
No description provided.
Compton-scattering cross sections from hydrogen (γp→γp) and from deuterium have been measured at four-momentum transfer t in the range 0.014<~−t<~0.17 GeV2 and photon energies of 8 and 16 GeV. Fits to our proton data of the form dσdt=AeBt give B≈7.8 GeV−2 and an intercept A which is in agreement with the optical point. Both coherent scattering from deuterons and incoherent scattering from neutrons and protons are seen from deuterium. A small difference between the neutron and proton cross sections is seen, indicating the presence of about a 3% isovector t-channel exchange amplitude in addition to the predominant isoscalar amplitude. The vector-dominance model predicts lower cross sections (by at least 20%) for both the hydrogen and deuterium cases.
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
None
No description provided.
From a 150 000-photograph exposure, we analyzed the p¯d→p¯psn reaction, ps denoting a proton stopping in the deuterium-filled bubble chamber. Choosing kinematical regions in which the ps can be recognized as a spectator, we studied the p¯n→p¯n process. From the observed p¯n diffraction peak, we obtained an exponential slope for the four-momentum-transfer distribution of bn=9.4±0.8 (GeV/c)−2, the elastic p¯n cross section being estimated as σe(p¯n)=16.5±2.4 mb. The present values in conjunction with those obtained at ≈1.8 and 3.5 GeV/c show that in this region bn and σe(p¯n) decrease with increasing incident momentum. We compared our data with the reactions np→np at ≈5.4 GeV/c and p¯p→p¯p at 5.7 GeV/c. The p¯n→p¯n and np→np differential cross sections exhibit a crossover phenomenon while p¯p and p¯n elastic scattering show an isospin dependence. We also analyzed the p¯d→p¯psn reaction by means of the Glauber formalism.
No description provided.
No description provided.
The differential cross sections and vector analyzing powers for nd elastic scattering at En=248 MeV were measured for 10°–180° in the center-of-mass (c.m.) system. To cover the wide angular range, the experiments were performed separately by using two different setups for forward and backward angles. The data are compared with theoretical results based on Faddeev calculations with realistic nucleon-nucleon (NN) forces such as AV18, CD Bonn, and Nijmegen I and II, and their combinations with the three-nucleon forces (3NFs), such as Tucson-Melbourne 99 (TM99), Urbana IX, and the coupled-channel potential with Δ-isobar excitation. Large discrepancies are found between the experimental cross sections and theory with only 2N forces for θc.m.>90°. The inclusion of 3NFs brings the theoretical cross sections closer to the data but only partially explains this discrepancy. For the analyzing power, no significant improvement is found when 3NFs are included. Relativistic corrections are shown to be small for both the cross sections and the analyzing powers at this energy. For the cross sections, these effects are mostly seen in the very backward angles. Compared with the pd cross section data, quite significant differences are observed at all scattering angles that cannot be explained only by the Coulomb interaction, which is usually significant at small angles.
Cross section for N DEUT elastic scattering for data taken in 2003 in the backward direction in the centre-of-mass. Statistical errors only are given.
Cross section for N DEUT elastic scattering for data taken in 2000 in the backward direction in the centre-of-mass. Statistical errors only are given.
Cross section for N DEUT elastic scattering in the forward direction in the centre-of-mass. Statistical errors only are given.
Data on elastic scattering of 96 MeV neutrons from Fe56, Y89, and Pb208 in the angular interval 10−70° are reported. The previously published data on Pb208 have been extended, as a new method has been developed to obtain more information from data, namely to increase the number of angular bins at the most forward angles. A study of the deviation of the zero-degree cross section from Wick's limit has been performed. It was shown that the data on Pb208 are in agreement with Wick's limit while those on the lighter nuclei overshoot the limit significantly. The results are compared with modern optical model predictions, based on phenomenology and microscopic nuclear theory. The data on Fe56, Y89, and Pb208 are in general in good agreement with the model predictions.
Measured differential cross section for elastic scattering on the FE target.
Measured differential cross section for elastic scattering on the Y target.
Measured differential cross section for elastic scattering on the PB target.