Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 222301, 2015.
Inspire Record 1373553 DOI 10.17182/hepdata.71502

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2\{2\}$ and $v_2\{4\}$, for charged hadrons from U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV and Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2\{2\}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2\{2\}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Interaction between Antiprotons

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 527 (2015) 345-348, 2015.
Inspire Record 1385105 DOI 10.17182/hepdata.71504

One of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force since acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, we have no direct knowledge of the nuclear force between antinucleons. Here, we study antiproton pair correlations among data taken by the STAR experiment at the Relativistic Heavy Ion Collider and show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: namely, the scattering length (f0) and effective range (d0). As direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, our result provides a fundamental ingredient for understanding the structure of more complex antinuclei and their properties.

2 data tables

Correlation function for proton-proton pairs (top), antiproton-antiproton pairs (middle), and the ratio of the former to the latter (bottom).

Measurements of the singlet s-wave scattering length (f0) and the effective range (d0) from this and other experiments.


Long-range pseudorapidity dihadron correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 747 (2015) 265-271, 2015.
Inspire Record 1346551 DOI 10.17182/hepdata.72303

Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.

23 data tables

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

81 data tables

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

More…

Probing Parton Dynamics of QCD Matter with $\Omega$ and $\phi$ Production

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 021903, 2016.
Inspire Record 1378002 DOI 10.17182/hepdata.72068

We present measurements of $\Omega$ and $\phi$ production at mid-rapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of $N(\Omega^{-}+\Omega^{+})/(2N(\phi))$. These ratios as a function of transverse momentum ($p_T$) fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at $\sqrt{s_{NN}}$ = 19.6, 27 and 39 GeV, and in central collisions at 11.5 GeV in the intermediate $p_T$ region of 2.4-3.6 GeV/c. We further evaluate empirically the strange quark $p_T$ distributions at hadronization by studying the $\Omega/\phi$ ratios scaled by the number of constituent quarks. The NCQ-scaled $\Omega/\phi$ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to $\sqrt{s_{NN}} >= 19.6$ GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark-matter to hadronic matter at collision energies below 19.6 GeV.

85 data tables

Phi Meson Spectra.

Phi Meson Spectra.

Phi Meson Spectra.

More…

Measurement of the transverse single-spin asymmetry in $p^\uparrow+p \to W^{\pm}/Z^0$ at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 132301, 2016.
Inspire Record 1405433 DOI 10.17182/hepdata.73263

We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at $\sqrt{s} = 500~\text{GeV}$ by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse momentum dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the non-universality of the Sivers function, fundamental to our understanding of QCD.

6 data tables

$P_{T}$ Recoil distribution of events simulated with PYTHIA 6.4 and reconstructed before and after the boson's PT correction has been applied.

Estimated background contributions for the $W^+ -> ev$ data yields.

Estimated background contributions for the $W^- -> ev$ data yields.

More…

Effect of event selection on jetlike correlation measurement in $d$+Au collisions at $\sqrt{s_{\rm{NN}}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 743 (2015) 333-339, 2015.
Inspire Record 1335765 DOI 10.17182/hepdata.73235

Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.

16 data tables

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3). Shown is the low FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the away side (|$\Delta\phi$ - $\pi$| < $\pi$/3. Shown is the high FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3) side. Shown is the high-activity data after subtracting the unscaled. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

More…

Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in $p^\uparrow+p$ at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 242501, 2015.
Inspire Record 1357596 DOI 10.17182/hepdata.73282

We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in $p^\uparrow+p$ collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of five standard deviations at high transverse momenta, at high pseudorapidities eta>0.5, and for pair masses around the mass of the rho-meson. This is the first direct transversity measurement in p+p collisions. Comparing the results to data from lepton-nucleon scattering will test the universality of these spin-dependent quantities.

15 data tables

$p_T$ asymmetries, $\eta$ < 0, maximum opening angle of 0.2.

$<M_{inv}>$ asymmetries, $\eta$ < 0, maximum opening angle of 0.2.

$p_T$ asymmetries, $\eta$ > 0, maximum opening angle 0.2.

More…

Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 94 (2016) 014910, 2016.
Inspire Record 1429700 DOI 10.17182/hepdata.73657

We present measurements of the near-side of triggered di-hadron correlations using neutral strange baryons ($\Lambda$, $\bar{\Lambda}$) and mesons ($K^0_S$) at intermediate transverse momentum (3 $<$ $p_T$ $<$ 6 GeV/$c$) to look for possible flavor and baryon/meson dependence. This study is performed in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations due to jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

11 data tables

Corrected 2D $K_S^0$ correlation function for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for 0-20% Cu+Cu. The data have been reflected about $\Delta\eta$ = 0 and $\Delta\phi$ = 0.

Corrected correlation functions $\frac{dN_{J}}{d\Delta\eta}$ in $\mid$$\Delta\eta$$\mid<$ 0.78 for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for (a) $\Lambda$-h and (b) $K_S^0$-h for minimum bias $d$+Au, 0-20% Cu+Cu, and 40-80% Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV after background subtraction. The data have been reflected about $\Delta\eta$ = 0.

$\Lambda$/$K^0_S$ ratio measured in the jet-like correlation in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and \assocrange{2.0}{3.0} along with this ratio obtained from inclusive $p_T$ spectra in \pp collisions.

More…