We report on the measurement of W-boson pair-production with the L3 detector at LEP at an average centre-of-mass energy of 172.13 GeV. In a data sample corresponding to a total luminosity of 10.25 pb −1 we select 110 four-fermion events with pairs of hadronic jets or leptons with high invariant masses. Branching fractions of W decays into different fermion-antifermion pairs are determined with and without the assumption of charged-current lepton universality. The branching fraction for hadronic W decays is measured to be: B (W → hadrons) = 64.2 −3.8 +3.7 (stat.) ± 0.5 (syst.) %. Combining all final states the total cross section for W-pair production is measured to be: σ WW = 12.27 −1.32 +1.41 (stat.) ± 0.23 (syst.) pb. The results are in good agreement with the Standard Model.
No description provided.
Low x deep-inelastic ep scattering data, taken in 1994 at the H1 detector at HERA, are analysed in the Breit frame of reference. The evolution of the peak and width of the current hemisphere fragmentation function is presented as a function of Q and compared with e+e- results at equivalent centre of mass energies. Differences between the average charged multiplicity and the multiplicity of e+e- annihilations at low energies are analysed. Invariant energy spectra are compared with MLLA predictions. Distributions of multiplicity are presented as functions of Bjorken-x and Q^2, and KNO scaling is discussed.
The current hemisphere fragmentation as a function of XP in the Breit frame.
The current hemisphere fragmentation as a function of LN(1/XP) in the Breitframe.
Current hemisphere fragmentation as a function of Q for the XP range 0.02 to 0.05, to show scaling violations.
The pbar p -> Ks Ks -> 4pi+/- cross section was measured at incident antiproton momenta between 0.6 and 1.9 GeV/c using the CERN Low Energy Antiproton Ring (LEAR). This investigation was part of a systematic study of in-flight antiproton-proton annihilations into two-neutral-meson final states in a search for hadronic resonances. A coarse scan of the pbar p -> Ks Ks cross section as a function of center-of-mass energy between 1.964 and 2.395 GeV/c^2 and a fine scan of the region surrounding the Xi(2220) are presented. Upper limits on the product branching ratio BR(Xi -> pbar p)BR(Xi -> Ks Ks) are determined for a wide range of mass and width assumptions based on the non-observation of the Xi(2220). A rise in the pbar p -> Ks Ks cross section is observed near 2.15 GeV/c^2, which is consistent with the f2(2150) resonance.
No description provided.
We have searched for the pair production of first generation scalar leptoquarks in the eejj channel using the full data set (123 pb-1) collected with the D0 detector at the Fermilab Tevatron during 1992--1996. We observe no candidates with an expected background of approximately 0.4 events. Comparing the experimental 95% confidence level upper limit to theoretical calculations of the cross section with the assumption of a 100% branching fraction to eq, we set a lower limit on the mass of a first generation scalar leptoquark of 225 GeV/c^2. The results of this analysis rule out the interpretation of the excess of high Q^2 events at HERA as leptoquarks which decay exclusively to eq.
No description provided.
We have measured the dijet angular distribution in $\sqrt{s}$=1.8 TeV $p\bar{p}$ collisions using the D0 detector. Order $\alpha^{3}_{s}$ QCD predictions are in good agreement with the data. At 95% confidence the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.
No description provided.
Results are presented of an analysis of the reactions pp -> pf(k0k+pi-)ps and pp -> pf(K0K0pi0)ps at 450 GeV/c. Clear f1(1285) and f1(1420) signals are seen and a spin parity analysis shows that both have IG JPC=0+ 1++. The f1(1285) decays to a0(980)pi and the f1(1420) decays to K* Kbar. Both states have a similar dependence as a function of dPT consistent with what has been observed for other qqbar states. Evidence is also presented for a K*Kbar decay mode of the eta2(1620).
SIG(C=TOT) denotes the total cross section for each resonance.
The e + e − → W + W − cross section is measured in a data sample collected by ALEPH at a mean centre-of-mass energy of 172.09 GeV, corresponding to an integrated luminosity of 10.65 pb −1 . Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7±1.2 (stat.) ±0.3 (syst.) pb . The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W→hadrons) =67.7±3.1 (stat.) ±0.7 (syst.) % , allowing a determination of the CKM matrix element | V cs |=0.98±0.14(stat.)±0.03(syst.).
Cross sections for the different topologies.
Combined W+ W- cross section.
The reaction pp -> pf (pi+pi-pi+pi-) ps has been studied at 450 GeV/c in an experiment designed to search for gluonic states. A spin analysis has been performed and the dPT filter applied. In addition to the well known f1(1285) there is evidence for two JPC=2-+ states called the eta2(1620) and eta2(1875) and a broad scalar called the f0(2000). The production of these states as a function of the dPT kinematical filter shows the behaviour expected for qqbar states. In contrast, there is evidence for two states at 1.45 GeV and at 1.9 GeV which do not show the behaviour observed for qqbar states.
SIG(C=TOT) denotes the total cross section for each resonance.
The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.
No description provided.
No description provided.
The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.
New measurements are presented of the photon structure function F_2^gamma(Q) at four values of Q^2 between 9 and 59 GeV/c^2 based on data collected with the OPAL detector at centre-of-mass energies of 161-172 GeV, with a total integrated luminosity of 18.1 pb^-1. The evolution of F_2^gamma with Q^2 in bins of x is determined in the Q^2 range from 1.86 to 135 GeV/c^2 using data taken at centre-of-mass energies of 91 GeV and 161-172 GeV. F_2^gamma is observed to increase with Q^2 with a slope of 1/alpha_em dF_2^gamma/dln(Q^2) = 0.10 +0.05 -0.03 measured in the range 0.1 < x < 0.6.
Measured values of F2 for the SW sample.
Measured values of F2 for the FD sample.
F2 for the full X range (0.1 to 0.6) as a function of Q**2. The full SW andFD sample points are tabulated for completeness but are not in the plot or fits . The first three points are previous OPAL data at sqrt(s) = 91 GeV (ZP C74(1997)33).