The cross section of bottom quark-antiquark ($b\bar{b}$) production in $p$+$p$ collisions at $\sqrt{s}=510$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider. The results are based on the yield of high mass, like-sign muon pairs measured within the PHENIX muon arm acceptance ($1.2<|y|<2.2$). The $b\bar{b}$ signal is extracted from like-sign dimuons by utilizing the unique properties of neutral $B$ meson oscillation. We report a differential cross section of $d\sigma_{b\bar{b}\rightarrow \mu^\pm\mu^\pm}/dy = 0.16 \pm 0.01~(\mbox{stat}) \pm 0.02~(\mbox{syst}) \pm 0.02~(\mbox{global})$ nb for like-sign muons in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $p_T>1$ GeV/$c$, and dimuon mass of 5--10 GeV/$c^2$. The extrapolated total cross section at this energy for $b\bar{b}$ production is $13.1 \pm 0.6~(\mbox{stat}) \pm 1.5~(\mbox{syst}) \pm 2.7~(\mbox{global})~\mu$b. The total cross section is compared to a perturbative quantum chromodynamics calculation and is consistent within uncertainties. The azimuthal opening angle between muon pairs from $b\bar{b}$ decays and their $p_T$ distributions are compared to distributions generated using {\sc ps pythia 6}, which includes next-to-leading order processes. The azimuthal correlations and pair $p_T$ distribution are not very well described by {\sc pythia} calculations, but are still consistent within uncertainties. Flavor creation and flavor excitation subprocesses are favored over gluon splitting.
$b\bar{b}$ differential cross section measured via B meson decay to like-sign dimuons as a function of rapidity and mass. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
$b\bar{b}$ differential cross section measured via B meson decay to all dimuons as a function of rapidity and mass. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
$b\bar{b}$ invariant yield measured via B meson decay to like-sign dimuons as a function of azimuthal opening angle. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin one allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a $Z$-boson pair is a rare and important one. Here we report the observation of this process from proton-proton collision data corresponding to an integrated luminosity of 139/fb recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the $Z$-boson pair - one containing four charged leptons and the other containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7 $\sigma$, and the measured cross-section for electroweak production is consistent with the standard model prediction. In addition, we report cross-sections for inclusive production of a $Z$-boson pair and two jets for the two final states.
Signal strength and significance of EW ZZjj processes
Measured and predicted fiducial cross-sections in both the lllljj and ll$\nu\nu$jj channels for the inclusive ZZjj processes. Uncertainties due to different sources are presented.
Observed and expected multivariate discriminant distribution in the $\ell\ell\ell\ell jj$ QCD CR.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|\eta|<0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s}=200$ GeV, which show a nonzero positive contribution of gluon spin to the proton spin.
Double-spin asymmetries $A_{LL}$ as a function of transverse momentum for positive and negative pions.
Non-monotonic variation with collision energy ($\sqrt{s_{\rm NN}}$) of the moments of the net-baryon number distribution in heavy-ion collisions, related to the correlation length and the susceptibilities of the system, is suggested as a signature for the Quantum Chromodynamics (QCD) critical point. We report the first evidence of a non-monotonic variation in kurtosis times variance of the net-proton number (proxy for net-baryon number) distribution as a function of \rootsnn with 3.1$\sigma$ significance, for head-on (central) gold-on-gold (Au+Au) collisions measured using the STAR detector at RHIC. Data in non-central Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of $\sqrt{s_{\rm NN}}$.
Event-by-event net-proton multiplicity distributions for central (0-5$\%$) Au+Au collisions from $\sqrt{s_{NN}} = 7.7 - 200 GeV. The distributions are normalised to total number of events. The distributions are not corrected for proton and antiproton detection efficiency.
Cumulants of net-proton distributions in Au+Au collisions for nine energies from $\sqrt{s_{NN}} = 7.7 - 200 GeV for 0-5$\%$ and 70-80$\%$ centrality.
Cumulant ratios C3/C2 and C4/C2 of net-proton distributions in Au+Au collisions for eight energies from $\sqrt{s_{NN}} = 7.7 - 62.4 GeV for 0-5$\%$ centrality. Also given are the derivative of the polynomial fits to the C3/C2 and C4/C2 vs energy at each energy and the Skellam baselines for the ratios.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0
The total cross section times the branching ratio.
The inclusive $J/\psi$ differential cross section as a function of $p_T$ at 1.2 < $|y|$ < 2.2 at 510 GeV.
The inclusive $J/\psi$ differential cross section integrated over 0 < $p_T$ < 10 GeV/$c$ as a function of rapidity at 510 GeV.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi invariant yields in p+p collisions as a function of pT at forward and backward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification in p+Al, p+Au and 3He+Au collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification in p+Al collisions as a function of centrality and rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.
RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Al 0%-100% centrality.
RpA of charged hadrons as a function of pT at forward and backward rapidity in p+Au 0%-100% centrality.
RpA of charged hadrons as a function of eta at forward and backward rapidity in p+Al and p+Au 0%-100% centrality.
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.
The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.
We report the first measurement of the inclusive jet and the dijet longitudinal double-spin asymmetries, $A_{LL}$, at midrapidity in polarized $pp$ collisions at a center-of-mass energy $\sqrt{s} = 510$ GeV. The inclusive jet $A_{LL}$ measurement is sensitive to the gluon helicity distribution down to a gluon momentum fraction of $x\approx 0.015$, while the dijet measurements, separated into four jet-pair topologies, provide constraints on the $x$ dependence of the gluon polarization. Both results are consistent with previous measurements made at $\sqrt{s}= 200$ GeV in the overlapping kinematic region, $x > 0.05$, and show good agreement with predictions from recent next-to-leading order global analyses.
Fractions of the next-to-leading-order cross section for inclusive jet production arising from quark-quark, quark-gluon and gluon-gluon scattering in pp collisions (200GeV)
Fractions of the next-to-leading-order cross section for inclusive jet production arising from quark-quark, quark-gluon and gluon-gluon scattering in pp collisions (500GeV)
The upper panel shows the jet yield vs detector jet pT in data and simulation for each of the three trigger categories. The lower three panels show the relative differences between data and simulation (JP0)
We report on the first measurements of J/$\psi$ production at very low transverse momentum ($p_{T} <$ 0.2 GeV/c) in hadronic Au+Au collisions at $\sqrt{s_{\rm{NN}}} =$ 200 GeV and U+U collisions at $\sqrt{s_{\rm{NN}}} =$ 193 GeV. Remarkably, the inferred nuclear modification factor of J/$\psi$ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for $p_{T} <$ 0.05 GeV/c in the 60-80$\%$ collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the $dN/dt$ distribution of J/$\psi$ for the very low $p_{T}$ range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/$\psi$ yield observed at extremely low $p_{T}$ originates from coherent photon-nucleus interactions. In particular, coherently produced J/$\psi$'s in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
'$J/\Psi$ invariant yields for Au+Au collisions 200 GeV as a function of $p_T$'
'$J/\Psi$ invariant yields for U+U collisions 193 GeV as a function of $p_T$'
'$J/\Psi$ $R_{AA}$ for Au+Au collisions 200 GeV as a function of $p_T$'