Results are presented on an analysis of the reaction K + p → K ∗+ (890) p at 16 GeV/ c and compared with data at lower incident momenta and with corresponding results for the reaction K − p → K ∗− (890) p. It is found for both reactions that the energy dependence of the cross section exhibits a simple ( p − n lab behaviour.
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND.
Photoproduction of π−-mesons on deuteron has been studied in the first resonance region with an annihilation photon beam with adjustable peak energy (from 250 MeV to 400 MeV). A coincidence detection of both outgoing π−-meson and forward proton has been performed with a set of 9 multiwire proportional chambers (1700 wires) inside the gap of a spectrometer. The momentum of the second proton is computed from three-body kinematics; their distribution is found in excellent agreement with the spectator model, even at the top of the resonance. The differential cross-sections of π− have been measured from 100° to 180° (center of mass); they are in reasonable agreement with conventional multipole calculations and do not indicate an appreciable isotensor term.
No description provided.
No description provided.
No description provided.
None
No description provided.
The polarization parameter P(t) for the reaction π−p→π0n has been measured at 3.5 and 5.0 GeV/c over the range 0.2<~−t<~1.8 (GeV/c)2. The two γ rays from the π0 decay were detected in a large lead-glass hodoscope. The results agree with the positive polarization values found in earlier Argonne National Laboratory data at −t<0.35 (GeV/c)2. P(t) drops to a small value near t=−0.6 (GeV/c)2 and remains the same out to t=−1.8 (GeV/c)2.
DATA POINTS MEASURED FROM SMALL GRAPH.
The differential cross section for π−−p elastic scattering has been measured at 13.8 and 22.6 GeV/c up to −t=5 (GeV/c)2. The dips in the angular distribution at −t≈0.8 and 2.8 (GeV/c)2 previously observed at lower momenta become less prominent at higher momentum. The −t=2.8 (GeV/c)2 dip is still observed at 13.8 GeV/c, but at 22.6 GeV/c it has become a sharp kink in the angular distribution. At large momentum transfers, dσdt at fixed t is still decreasing with increasing s, but at a slower rate in the 14- to 23-GeV/c region than at lower momenta.
No description provided.
No description provided.
We have found 431 events of the reaction K+d→K0pps at 3.8−GeVc K+ beam momentum in a 295 000-frame exposure of the Argonne National Laboratory 30-in. deuterium-filled bubble chamber. The event sample consists of one- and two-prong events with a visible K0 decaying to π+π− The total and differential cross sections are found after correction for unseen K0's and for efficiencies in the scanning-measuring-fitting chain. Comparisons of the data are made to an SU(3) sum rule, a Regge model, and data for K−p→K¯0n.
No description provided.
GLAUBER SCREENING AND PAULI EXCLUSION PRINCIPLE CORRECTIONS ARE REQUIRED TO YIELD THE K+ N CHARGE EXCHANGE CROSS SECTION. THE GLAUBER CORRECTION IMPLIES AN INCREASE IN THE CROSS SECTIONS BY THE FACTOR 1.016. THE PAULI CORRECTION IS SLIGHT EXCEPT AT LOW -T (<0.2 GEV**2) WHERE IT IS LARGE AND UNCERTAIN.
The differential cross section for π+p elastic scattering has been measured at 13.8 GeVc for 0.7<|t|<3.8(GeVc)2. The cross section is found to be equal to that previously obtained for π−p elastic scattering, except in the region |t|=2.8 (GeVc)2, where the π+p data do not show the prominent dip observed in π−p scattering. Data have also been obtained for 13.8−GeVc K+p elastic scattering for 0.8<|t|<2.2 (GeVc)2.
No description provided.
No description provided.
The results presented in this paper are obtained from an analysis of bubble-chamber pictures of K−d interactions at an incident K− momentum of 5.5 GeV/c. Generally, the quasitwo-body final states are produced peripherally, with a small backward peak occurring in some of the final states. The final states Σ−ω, Σ−ρ0, and Σ−φ appear to be produced primarily by vector-meson exchange. In the final state Λ(1520)π− the decay distributions of the Λ(1520) hyperon are found to be consistent with a vector-exchagne production process with M2 coupling at the nucleon vertex. The predictions of the independent-quark model and of other symmetry schemes, namely that the forward cross sections for Σ−ρ0, Σ−ω, Σ−φ production be in the ratios 1: 1: 2, are not inconsistent with our experimental values.
No description provided.
FRACTIONAL FORWARD HYPERON CROSS SECTION AFTER BACKGROUND SUBTRACTION.
No description provided.
We have measured the total inelastic cross section (σinel) and charged-particle multiplicities obtained in pp collisions at 405 GeV/c. The data are from a preliminary 12 000-picture bubble-chamber exposure. We find σinel=32.8±1.0 mb; the low moments of the multiplicity distribution for negative particles are 〈n−〉=3.50±0.07, D−=2.37±0.05, f2−=2.1±0.2, and f3−=0.1±0.9. We also present updated results at 102 GeV/c.
SUPERCEDES PRELIMINARY RESULTS IN J. W. CHAPMAN ET AL., PRL 29, 1686 (1972).
No description provided.
FIT TO ELASTIC DIFFERENTIAL CROSS SECTION FOR 0.05 < -T < 0.7 GEV**2.
The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.