We report on a study of the charge-exchange reaction pp → nΔ ++ (1232) at the CERN intersecting storage rings (ISR) in the energy range √ s = 23 to 53 GeV. From our analysis of the energy dependence of the total cross-section, of the differential cross-section d σ /d t and of the decay angular distributions we find evidence that pion exchange is dominant up to √ s = 23 GeV and that ( ϱ +A 2 ) exchange dominates the reaction for √ s ⩾ 30 GeV, as described by simple Regge-pole models.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
No description provided.
Differential cross sections have been measured in the region of small forward angles (between 0 and ∼40 mrad) for the elastic scattering reactions pp → pp at 4.2, 7.0 and 10.0 GeV /c and p p → p p at 4.2, 6.0, 8.0 and 10.0 GeV /c . The maximum momentum transfer is ∼0.025 GeV 2 at the lowest and ∼0.10 GeV/c at the highest incident momentum. Values of the slope and the real part of the forward scattering amplitude of the above reactions have been derived; the values obtained are in good agreement with dispersion relations.
No description provided.
No description provided.
No description provided.
Results are presented concerning K − d and K − n elastic scattering at an incident momentum of 4.5 GeV/ c . The high-energy Glauber formalism has been used in analyzing the data in which the nucleon scattering amplitudes are parameterized and employing the spherical and quadrupole deuteron form factors. An impulse approximation analysis of the K − n differential scattering cross section fitted to a single exponential of the form d σ /d t ) 0 e Bt , leads to the result (d σ /d t ) 0 = 21.3 + mn ; 5.5 mb/(GeV/ c ) 2 and B = 6.9 + mn ; 0.5 (GeV/ c ) −2 . A global fit has been made to existing K + mn; N two-body scattering data at this energy in order to determine the scattering amplitudes. It was found that the K − n and K − p elastic amplitudes are dominantly imaginary with a relatively small contribution from spin-flip amplitudes. The slopes of the differential elastic cross sections for K − n and K − p are nearly equal, as are those for K + n and K + p. However, the value of the slope for K + is smaller than that for K − at this energy.
No description provided.
No description provided.
No description provided.
A high-mass Δ resonance is observed in several final states from π + p interactions at 10.3 GeV/ c . We obtain fitted mass and width values for this structure of 1871 ± 22 MeV and 205 ± 43 MeV, respectively. The branching ratios for decays to π + p, p π + π 0 , n π + π + and Σ + K + are found to be 0.48 ± 0.15, 0.26 ± 0.07, 0.24 ± 0.07 and 0.03 ± 0.01, respectively. The Δϱ, Δω differential cross sections and the ϱ 0 density matrix elements are examined.
DEL(1950B) (OR DEL(1880B)) FITTED WITH BRIET-WIGNER RESONANCE AND POLYNOMIAL BACKGROUND.
No description provided.
No description provided.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 4 GeV 2 < − t < 10 GeV 2 at the centre-of-mass energy of √ s = 53 GeV. The data have been obtained using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. We observe another change of slope of the differential cross section near − t =6.5 GeV 2 .
NUMERICAL VALUES SUPPLIED BY K. WINTER.
A partial-wave analysis of the (3 π ) 0 system produced peripherally in the reaction K − p → π + π − π 0 Λ at 4.2 GeV/ c is presented. The observation of the weak Λ decay allows a determination of all the transversity production amplitudes except for two phases. The production of known resonances having decay modes other than 3 π is used to test the isobar model ansatz. Significant ω(783), φ(1020) and A 2 (1310) production is observed. The spin parity of the ω ∗ (1675) is established as 3 − . No evidence for production of other resonances, such as axial vector-mesons, is found.
No description provided.
In this letter results are presented on the reactions K − p → K 0 n and K − p → K − p from a high statistics CERN 2-metre hydrogen bubble chamber exposure at 4.15 GeV/ c . The behaviour of the differential cross section as a function of four-momentum transfer shows remarkable similarities between the two reactions studied. From a comparison of our data with K + p elastic scattering at 4.27 GeV/ c we draw some conclusions concerning the magnitude of the contributing amplitudes.
No description provided.
No description provided.
The production of the f 0 (1270) has been studied in the reaction π − p → π + π − n at 12 and 15 GeV/ c in the momentum transfer range 0.02 to 0.80 GeV 2 . Differential and total cross sections for the reaction π − p → f 0 n have been determined. The f 0 decay density matrix elements have been evaluated requiring all the matrix eigenvalues to be non-negative. The relative unnatural and natural parity exchange contributions to the f 0 production have been studied. The results are compared with a Regge exchange model formulated in terms of the pion and A 2 exchanges including cut contributions.
No description provided.
No description provided.
No description provided.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.
In a single-arm spectrometer experiment, high-precision measurements of dσdt for π−p, K−p, and p¯p elastic scattering have been made at 8 and 16 GeV/c. The π−p data show rich structure at 8 GeV/c, indicative of strong non-Pomeron contributions, while the 16-GeV/c data are much smoother. For −t≳1 (GeV/c)2 there is a strong s dependence while there is very little for −t<1 (GeV/c)2. For p¯p scattering the forward region is smoothly diffractive for −t<0.4 (GeV/c)2 and shows antishrinkage. The exponential slope parameter b is measured to be 12.36 ± 0.04 (GeV/c)−2 at 8 GeV/c and 11.40 ± 0.04 (GeV/c)−2 at 16 GeV/c. The structure near −t=0.6 (GeV/c)2 seen at lower energies is still obvious at 16 GeV/c. The K−p data show some structure at 8 GeV/c, but can be represented adequately by a quadratic exponential form. At 16 GeV/c the K−p angular distribution shows antishrinkage and lies above the 8-GeV/c cross section for 0.11<−t<0.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.