We have measured correlations between single high- p T (1.5< p T <3.5 GeV/ c ) trigger particles on one side of the beam line and groups of particles entering a calorimeter on the opposite side of the beam line. The mean transverse momentum measured in the calorimeter is found to increase with the trigger-particle transverse momentum. The coplanarity of the events increases with trigger-particle transverse momentum. We have compared our data with the predictions of a phenomenological four-jet model. To fit our data we find that we must give large (0.9 GeV/ c ) mean transverse momenta to the constituents of the initial hadrons.
No description provided.
No description provided.
No description provided.
None
D* FRAGMENTATION FUNCTION.
R VALUE IS RADIATIVELY CORRECTED (BUT NOT CROSS SECTION).
Inelastic and elastic $J/\psi$ photoproduction on hydrogen are investigated at a mean energy of 105 GeV. The inelastic cross section with $E_{\psi} / E_{\gamma}$ < 0.9 is significantly lower than the corresponding result for muoproduction on iron targets, but is consistent with a second-order perturbative QCD calculation.
No description provided.
We have studied D* production mechanisms using data from a photoproduction experiment at the Fermilab Tagged Photon Spectrometer. A large sample of charged D*’s was selected via the clean signature of the cascade decay D*→D0π+ and subsequently D0→K−π+ or D0→K−π+π0. The cross section for the process γp→(D*++anything)p at an average energy of 105 GeV was measured to be 88±32 nb. Only (11±7)% of D*’s were found to be consistent with being accompanied solely by a D¯* or a D¯; the remaining events contain additional particles. The distribution of the production angle of the D* in the photon-fragmentation-system center of mass is strongly anisotropic and consistent with the form f(θ*)=cos4θ*. We set a limit on the associated-production-process cross section σ(γp→(D¯*−+anything)Λc) x)<60 nb (90% C.L.).
No description provided.
No description provided.
The inclusive production cross sections and mean multiplicities of π±, K±, p, and p¯ in e+e− annihilation at a c.m. energy of 29 GeV have been measured with the time-projection chamber at PEP, using ionization energy loss to separate particle types. On average, 10.7±0.6 π±, 1.35±0.13 K±, and 0.60±0.08 p,p¯ are contained in an annihilation event. The fraction of pions among final-state particles decreases from over 95% at 0.3 GeV/c momentum to about 60% at high momentum; the kaon and proton fractions rise correspondingly.
PARTICLE FRACTIONS.
PARTICLE FRACTIONS.
PARTICLE FRACTIONS.
Using a double arm electromagnetic calorimeter we have searched for narrow states produced in the exclusive reaction π − p→γγn at 13 GeV/c. No enhancements were observed in the mass range 2.0–4.0 GeV/c 2 . For example, the 90% confidence limit on η c production is σ ( π − p→ η c n)× B ( η c → γγ ) < 44 pb.
UPPER LIMIT (90 PCT CL) FOR SIG*BR(ETA/C --> 2 GAMMA).
None
Axis error includes +- 0.0/0.0 contribution (?////DUE TO ERRORS IN PHOTON POLARIZATION).
During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.
Comparison of Bhabhas with QED.
Muon angular distributions.
Forward-backward asymmetry from full angular range.
The electroweak production asymmetry and the decay fragmentation function for e + e − → c c have been measured at s = 29 GeV using charged D ∗ production over the full kinematic range. The data were taken at PEP using the High Resolution Spectrometer. The measured asymmetry is −0.12 ± 0.08. The total production cross section in units of the point cross section corrected for initial state radiation is R D ∗ = 2.7 ± 0.9 .
ASSUMES SIG(D*+) = SIG(D*0). (EXPT. MEASURES D*+ PRODUCTION ONLY). R VALUE CORRECTED FOR INITIAL STATE RADIATION.
No description provided.
We have observed inclusive production of D0 and D+ mesons, and their charge conjugates, in e+e− annihilation at 29 GeV on the basis of a data sample of 106 pb−1. These signals correspond to R values of R(D0+D―0)=1.8±0.5 and R(D++D−)=1.2±0.4. Taking the D+ and D0 data together, we measure a charge asymmetry of A=−0.08±0.12 for charmed quarks. A comparison of R(D+D―) with R(D*+D―*) obtained via the process D*+→D0π+ gives a DD* ratio of 1.0−0.2+0.3, indicating that direct D* production dominates over direct D production.
No description provided.
EXTRAPOLATED TO ALL Z.
No description provided.