Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in minimum bias D+AU collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

More…

The Energy dependence of p(t) angular correlations inferred from mean-p(t) fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
J.Phys.G 34 (2007) 451-466, 2007.
Inspire Record 717232 DOI 10.17182/hepdata.102948

We present the first study of the energy dependence of $p_t$ angular correlations inferred from event-wise mean transverse momentum $<p_{t} >$ fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related $<p_{t}>$ fluctuations near 10 GeV.

5 data tables

Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.

Per-particle fluctuation dependence on pseudorapidity scale $\delta\eta$ in central collisions.

Centrality dependence of $<p_t>$ fluctuations in the STAR acceptance for four energies. $\nu$ is the mean participant path length (please consult text).

More…

Directed flow in Au + Au collisions at s(NN)**(1/2) = 62-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034903, 2006.
Inspire Record 695404 DOI 10.17182/hepdata.102947

We present the directed flow ($v_1$) measured in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 62.4 GeV in the mid-pseudorapidity region $|\eta|<1.3$ and in the forward pseudorapidity region $2.5 < |\eta| < 4.0$. The results are obtained using the three-particle cumulant method, the event plane method with mixed harmonics, and for the first time at the Relativistic Heavy Ion Collider (RHIC), the standard method with the event plane reconstructed from spectator neutrons. Results from all three methods are in good agreement. Over the pseudorapidity range studied, charged particle directed flow is in the direction opposite to that of fragmentation neutrons.

19 data tables

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

Directed flow of charged particles as a function of pseudorapidity, for centrality 10%-70%.

More…

Multi-strange baryon elliptic flow in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 95 (2005) 122301, 2005.
Inspire Record 681161 DOI 10.17182/hepdata.102945

We report on the first measurement of elliptic flow $v_2(p_T)$ of multi-strange baryons $\Xi+\bar{Xi}$ and $\Omega+\bar{Omega} in heavy-ion collisions. In minimum bias Au+Au collisions at sqrt(s_NN) = 200 GeV, a significant amount of elliptic flow, comparable to other non-strange baryons, is observed for multi-strange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The $p_T$ dependence of $v_2$ of the multi-strange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultra-relativistic nuclear collisions at RHIC.

5 data tables

$\Xi^{-} + \Xi^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

$\Omega^{-} + \Omega^{+}$ invariant mass distribution from minimum bias (0–80%) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Azimuthal distributions with respect to the event plane of the $\Xi^{-} + \Xi^{+}$ and $\Omega^{-} + \Omega^{+}$ raw yields.

More…

Incident energy dependence of p(t) correlations at RHIC.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 044902, 2005.
Inspire Record 681688 DOI 10.17182/hepdata.102946

We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

8 data tables

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 20 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 62 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 130 GeV for the 5% most central collisions.

More…

Pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 064907, 2004.
Inspire Record 656934 DOI 10.17182/hepdata.102944

The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV are presented. The charged particle density at mid-rapidity, its pseudorapidity asymmetry and centrality dependence are reasonably reproduced by a Multi-Phase Transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for \pT below 5 GeV/$c$. The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2 $<$ \pT $<$ 6 GeV/$c$, with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings.

5 data tables

The p$_T$ spectra of charged hadrons for various centrality classes.

The pseudorapidity dependence of charged particle densities for various centrality classes.

The ratio of charged hadron spectra in the backward rapidity to forward rapidity region for minimum bias and ZDC-d neutron-tagged events.

More…

Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

K*(892)0 production in relativistic heavy ion collisions at S(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.C 66 (2002) 061901, 2002.
Inspire Record 587235 DOI 10.17182/hepdata.54898

We report the first observation of $K^{\star}(892)^{0}\to\pi K$ in relativistic heavy ion collisions. The transverse momentum spectrum of $(K^{\star0}+\bar{K}^{\star0})/2$ from central Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV is presented. The ratios of the $K^{\star0}$ yield derived from these data to the yields of negative hadrons, charged kaons, and $\phi$ mesons have been measured in central and minimum bias collisions and compared with model predictions and comparable $e^{+}e^{-}$, $pp$, and $\bar{p}p$ results. The data indicate no dramatic reduction of $K^{\star0}$ production in relativistic heavy ion collisions despite expected losses due to rescattering effects.

4 data tables

Transverse mass spectrum of K*0 with YRAP = -0.5 to 0.5 for the 14 PCT most central interactions. Numerical values requested from the authors.

K*0 to negative hadron ratio using hadron data from Adler et al PRL 87,112303(2001).

K*0 to kaon ratio using STAR kaon data.

More…