During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.
Comparison of Bhabhas with QED.
Muon angular distributions.
Forward-backward asymmetry from full angular range.
No description provided.
No description provided.
Elastic scattering of hadrons on protons has been measured at momenta of 50, 100, and 200 GeV/c. The meson-proton scattering is found to be independent of momentum and meson type for −t>0.8 (GeV/c)2. The momentum dependence of the pp dip at −t=1.4 (GeV/c)2 was investigated. Slope parameters are given.
No description provided.
No description provided.
No description provided.
The elastic differential cross section for pp scattering has been measured up to a momentum transfer of ‖ t ‖ = 3(GeV/ c ) 2 at 100 GeV/c and 200 GeV/c incident momenta. The 200 GeV/ c measurements shows a diffractive like dip at ‖ t ‖ = 1.5 GeV/ c while no such dip is seen in the 100 GeV/ c data.
No description provided.
The differential cross section for π±, K±, and p± on hydrogen have been measured in the range 0.07<−t<1.6 (GeV/c)2. The dependence on momentum, momentum, transfer, and particle type are discussed.
No description provided.
We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.
We present data on the reaction K+p→K+p at large angles. Between the forward diffraction peak and the backward peak the cross section is independent of four-momentum transfer but varies with incident momentum.
No description provided.
No description provided.