Using the CLEO detector at the Cornell Electron-positron Storage Ring, we have measured the scaled momentum spectra, dsigma/dx_p, and the inclusive production cross sections of the charm mesons D+, D0, D*+, and D*0 in e+e- annihilation at about 10.5 GeV center of mass energy, excluding the decay products of B mesons. The statistical accuracy and momentum resolution are superior to previous measurements at this energy.
Total cross sections for D production from the various decay modes. The data are fully corrected for detection efficiency and decay branching ratios. The second DSYS error is the error due to the uncertainty in the branching ratio.
Differential cross sections for D+ production from the (K- PI+ PI+) decay mode.
Differential cross sections for D0 production from the (K- PI+) decay mode.
The production rates of D*+-, Ds*+-, D+-, D0 / D0bar, Ds+, and Lambda_c in Z to ccbar decays are measured using the LEP I data sample recorded by the ALEPH detector. The fractional energy spectrum of the D*+- is well described as the sum of three contributions: charm hadronisation, b hadron decays and gluon splitting into a pair of heavy quarks. The probability for a c quark to hadronise into a D*+ is found to be f(c to D*+) = 0.233 +- 0.010 (stat.) +- 0.011 (syst.). The average fraction of the beam energy carried by D*+- mesons in Z to cc events is measured to be < X_E (D*+-) >_cc = 0.4878 +- 0.0046 (stat.) +- 0.0061 (syst.). The D*+- energy and the hemisphere mass imbalance distributions are simultaneously used to measure the fraction of hadronic Z decays in which a gluon splits to a cc pair: n_{gluon to cc} = (3.23 +- 0.48 (stat.) +- 0.53 (syst.) %. The ratio of the Vector/(Vector+Pseudoscalar) production rates in charmed mesons is found to be P_V = 0.595 +- 0.045. The fractional decay width of the Z into cc pairs is determined from the sum of the production rates for various weakly decaying charmed states to be Rc = 0.1738 +- 0.0047 (stat.) +- 0.0116 (syst.).
The differential D*+- production rate. Statistical errors only.
The multiplicity of D*+- events using a MC shape to do the very small extrapolation over the entire X range.
Fraction of hadronic Z0 decays into charm quark pairs summing all the contributions of the fundamental charmed states and including a contribution from baryons not decaying to LAMBDA/C+. The second DSYS error is due to the uncertainty in the branching ratio.
A measurement of the spin alignment of charged D^* mesons produced in continuum e^+ e^- \to c \bar{c} events at \sqrt{s}=10.5 GeV is presented. This study using 4.72 fb^{-1} of CLEO II data shows that there is little evidence of any D^* spin alignment.
Systematic errors are not given.
Systematic errors are not given.
Two decay modes of D0 --> K- PI+ and D0 --> K- PI+ PI0 are combined.
From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.
Value of SIN2TW(eff) from CQ-quark asymmetries.
No description provided.
The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D
No description provided.
The DSYS error is due to the error in the branching ratio.
The DSYS error is due to the error in the branching ratio.
We have studied inclusive D*± production using the DELCO detector at PEP. Our technique involved kaon identification in the momentum range above 3.2 GeV/c using a threshold gas Čerenkov counter. This leads to a model-independent upper limit on D0−D¯0 mixing of 8.1% (90% confidence level). We also have measured the charm fragmentation function, which peaks at x≡PD*(Ebeam2−MD*2)12 of 0.56±0.06(stat.), and the total cross section for D* production, σ(D*±)=0.140±0.021(stat.)±0.032(syst.) nb (x>0.3, with radiative correction).
No description provided.
SYSTEMATIC ERROR DOES NOT INCLUDE THE UNCERTAINTY ON THE BRANCHING RATIOS USED.