We present a study of events with W bosons and hadronic jets produced in p¯p collisions at a center of mass energy of 1.8 TeV. The data consist of 51400 W→eν decay candidates from 108 pb−1 of integrated luminosity collected using the CDF detector at the Fermilab Tevatron collider. Cross sections and jet production properties have been measured for W+>~1 to >~4 jet events. The data compare well to predictions of leading-order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.
W plus Njet cross sections.
We report on the first measurement of the rapidity distribution dsigma/dy over nearly the entire kinematic region of rapidity for e^+e^- pairs in the Z-boson region of 66<M_{ee}<116 GeV/c^2 and at higher mass M_{ee}>116 GeV/c^2. The data sample consists of 108 pb^{-1} of ppbar collisions at \sqrt{s}=1.8 TeV taken by the Collider Detector at Fermilab during 1992--1995. The total cross section in the $Z$-boson region is measured to be 252 +- 11 pb. The measured total cross section and d\sigma/dy are compared with quantum chromodynamics calculations in leading and higher orders.
No description provided.
We have measured the pT distribution of top quarks that are pair produced in pp¯ collisions at s=1.8TeV using a sample of tt¯ decays in which we observe a single high- pT charged lepton, a neutrino, and four or more jets. We use a likelihood technique that corrects for the experimental bias introduced due to event reconstruction and detector resolution effects. The observed distribution is consistent with the standard model prediction. We use these data to place limits on the production of high- pT top quarks suggested in some models of anomalous top quark pair production.
No description provided.
We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.
Polarization for prompt J/PSIs (Q=PROMPT) and for J/PSI from B meson decays(NAME=BEAUTY).
Polarization for prompt PSI(2S) (NAME=PROMPT) and for PSI(2S) from B meson decays (NAME=B).
We use 106 $\ipb$ of data collected with the Collider Detector at Fermilab to search for narrow-width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on the cross section for narrow, vector resonances decaying to $\ttbar$ are presented. At the 95% confidence level, we exclude the existence of a leptophobic $\zpr$ boson in a model of topcolor-assisted technicolor with mass $M_{\zpr}$ $<$ 480 $\gev$ for natural width $\Gamma$ = 0.012 $M_{\zpr}$, and $M_{\zpr}$ $<$ 780 $\gev$ for $\Gamma$ = 0.04 $M_{\zpr}$.
UNSPEC here means any vector particle decaying to TQ TQBAR.
We present a measurement of the cross section for production of two or more jets as a function of dijet mass, based on an integrated luminosity of 86 pb^-1 collected with the Collider Detector at Fermilab. Our dijet mass spectrum is described within errors by next-to-leading order QCD predictions using CTEQ4HJ parton distributions, and is in good agreement with a similar measurement from the D0 experiment.
The differential cross section for two or more jets as a function of the dijet mass.
We measure the relative rate of production of orbitally excited (L=1) states of B mesons (B**) by observing their decays into Bπ±. We reconstruct B mesons through semileptonic decay channels using data collected in pp¯ collisions at s=1.8TeV. The fraction of light B mesons that are produced as L=1B** states is measured to be 0.28±0.06(stat)±0.03(syst). We also measure the collective mass of the B** states, and quantify the result by quoting the (model-dependent) mass of the lowest B** state to be m(B1)=5.71±0.02GeV/c2.
FD is considered as a quark fragmentation fraction.
We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.
No description provided.
The transverse momentum and total cross section of e^+e^- pairs in the Z-boson region of 66<M_{ee}<116 GeV$/c^2$ from $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV are measured using 110 pb^{-1} of collisions taken by the Collider Detector at Fermilab during 1992-1995. The total cross section is measured to be $248 \pm 11$ pb. The differential transverse momentum cross section is compared with calculations that match quantum chromodynamics perturbation theory at high transverse momentum with the gluon resummation formalism at low transverse momentum.
The measured transverse momentum distribution of e+e- pairs in the Z0 bosonregion. PT is the centre of the bins.
The total cross section for e+e- pair production in the Z0 region. The mainerror is the statistical and efficiency error, the first DSYS error is the syst ematic error from the background subtractions and the second DSYS error is from the collision luminosity.