Showing 10 of 32 results
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $σ(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $σ(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $σ(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=σ(tq)/σ(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/Λ^2 < 0.06$ and $-0.87 < C_{ϕQ}^{3}/Λ^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $σ(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
The impact of the eight most important systematic uncertainties on \(R_t\), in %.
The post-fit yields in the two SRs. All uncertainties applied in the analysis are included.
Limits on EFT parameters and Vtb extracted from the analysis. The upper and lower limits correspond to 95% CL.
Results of the main analysis.
Pre-fit distribution of the NN discriminant \(D_{\text{nn}}\) in SR plus.
Post-fit distribution of the NN discriminant \(D_{\text{nn}}\) in SR plus.
Post-fit distribution of the \(\Delta\phi(\vec{p}_{T}^{miss},\mu)\) variable in the muon-plus CR.
Pre-fit distribution of the NN discriminant \(D_{\text{nn}}\) in SR minus.
Post-fit distribution of the NN discriminant \(D_{\text{nn}}\) in SR minus.
Post-fit distribution of the \(\Delta\phi(\vec{p}_{T}^{miss},\mu)\) variable in the muon-minus CR.
Pre-fit distribution of the invariant mass of the untagged jet and the b-tagged jet, \(m(jb)\), in SR plus.
Pre-fit distribution of the absolute value of the pseudorapidity of the untagged jet, \(|\eta(j)|\), in SR plus.
Pre-fit distribution of the absolute value of the difference in \(p_{\text{T}}\) between the reconstructed W boson and the jet pair, \(|\Delta p_{\text{T}}(W, jb)|\), in SR plus.
Pre-fit distribution of the difference in azimuth angle between the reconstructed W boson and the jet pair, \(|\Delta\phi(W, jb)|\), in SR plus.
Pre-fit distribution of the invariant mass of the reconstructed top quark, \(m(t)\), in SR plus.
Pre-fit distribution of the absolute value of the difference in pseudorapidity between the charged lepton and the untagged jet, \(|\Delta\eta(\ell ,j)|\), SR plus.
Pre-fit distribution of the angular distance of the charged lepton and the untagged jet, \(\Delta R(\ell ,j)\), in SR plus.
Pre-fit distribution of the absolute value of the difference in pseudorapidity between the b-tagged jet and the charged lepton, \(|\Delta\eta(b,\ell )|\), in SR plus.
Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.
Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.
Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production in the given XF regions for different M(PV) regions. The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Spin alignment RHO(00) extracted using DELTA(P), the direction of the momentum transfer from the beam proton in the initial state to the fast proton in the final state, as the reference axis. The table includes PHI and OMEGA production. The results for different P(V) cuts are also given for OMEGA production. The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.
Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.
Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.
Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.
Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.
Cross section dsigma/dpt as a function of the leading jet pt corrected to the lepton common fiducial region and for QED radiation effects.
Cross section dsigma/dpt as a function of the second-leading jet pt corrected to the lepton common fiducial region and for QED radiation effects.
Inclusive jet differential cross section dsigma/dy corrected to the lepton common fiducial region and for QED radiation effects.
Jet differential cross section dsigma/dy as a function of the leading jet y corrected to the lepton common fiducial region and for QED radiation effects.
Jet differential cross section dsigma/dy as a function of the second-leading jet y corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/dmjj as a function of the dijet invariant mass mjj corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/d DeltaYjj as a function of the dijet rapidity separation DeltaYjj corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/d DeltaPhijj as a function of the dijet azimuthal separation DeltaPhijj corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/d DeltaRjj as a function of the dijet angular separation DeltaRjj corrected to the lepton common fiducial region and for QED radiation effects.
Cross section for Inclusive Jet Multiplicity for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Ratio of cross sections for N/N-1 inclusive jet multiplicities for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized inclusive jet differential cross section 1/sigma_DY dsigma/dpt for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized leading jet differential cross section 1/sigma_DY dsigma/dpt for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized second-leading jet differential cross section 1/sigma_DY dsigma/dpt for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized inclusive jet differential cross section 1/sigma_DY dsigma/dy for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized leading jet differential cross section 1/sigma_DY dsigma/dy for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized second leading jet differential cross section 1/sigma_DY dsigma/dy for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet invariant mass 1/sigma_DY dsigma/dmjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet rapidity separation 1/sigma_DY dsigma/dDeltaYjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet azimuthal separation 1/sigma_DY dsigma/dDeltaPhijj (1/rad.) for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet angular separation 1/sigma_DY dsigma/dDeltaRjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
The production of Kshort and Lambda hadrons is studied in inelastic pp collisions at sqrt(s) = 0.9 and 7 TeV collected with the ATLAS detector at the LHC using a minimum-bias trigger. The observed distributions of transverse momentum, rapidity, and multiplicity are corrected to hadron level in a model-independent way within well defined phase-space regions. The distribution of the production ratio of Lambdabar to Lambda baryons is also measured. The results are compared with various Monte Carlo simulation models. Although most of these models agree with data to within 15% in the Kshort distributions, substantial disagreements with data are found in the Lambda distributions of transverse momentum.
The corrected transverse momentum distribution of KS mesons at 7000 GeV.
The corrected rapidity distribution of KS mesons at 7000 GeV.
The corrected multiplicity distribution of KS mesons at 7000 GeV.
The corrected transverse momentum distribution of KS mesons at 900 GeV.
The corrected rapidity distribution of KS mesons at 900 GeV.
The corrected multiplicity distribution of KS mesons at 900 GeV.
The corrected transverse momentum distribution of LAMBDA baryons at 7000 GeV.
The corrected rapidity distribution of LAMBDA baryons at 7000 GeV.
The corrected multiplicity distribution of LAMBDA baryons at 7000 GeV.
The corrected transverse momentum distribution of LAMBDA baryons at 900 GeV.
The corrected rapidity distribution of LAMBDA baryons at 900 GeV.
The corrected multiplicity distribution of LAMBDA baryons at 900 GeV.
The production ratio between LAMBDABAR and LAMBDA baryons at 7000 GeV as a function of rapidity.
The production ratio between LAMBDABAR and LAMBDA baryons at 7000 GeV as a function of transverse momentum.
The production ratio between LAMBDABAR and LAMBDA baryons at 900 GeV as a function of rapidity.
The production ratio between LAMBDABAR and LAMBDA baryons at 900 GeV as a function of transverse momentum.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The ratio of production cross sections of the W and Z bosons with exactly one associated jet is presented as a function of jet transverse momentum threshold. The measurement has been designed to maximise cancellation of experimental and theoretical uncertainties, and is reported both within a particle-level kinematic range corresponding to the detector acceptance and as a total cross-section ratio. Results are obtained with the ATLAS detector at the LHC in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of 33 pb^-1. The results are compared with perturbative leading-order, leading-log, and next-to-leading-order QCD predictions, and are found to agree within experimental and theoretical uncertainties. The ratio is measured for events with a single jet with p_T > 30 GeV to be 8.73 +/- 0.30 (stat) +/- 0.40 (syst) in the electron channel, and $ 8.49 +/- 0.23 (stat) +/- 0.33 (syst) in the muon channel.
The ratio of W to Z production corrected to full phase space for the two channels combined.
The ratios of W to Z production in the fiducial region for the individual lepton channels and for the channels combined.
Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb^-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.
Total inclusive jet cross section as a function of the jet multiplicity.
Ratio of the n-jet cross section to the (n-1) jet cross section.
Differential cross section as a function of the leading jet PT for events with jet multiplicity >= 2.
Differential cross section as a function of the 2nd leading jet PT for events with jet multiplicity >= 2.
Differential cross section as a function of the 3rd leading jet PT for events with jet multiplicity >= 3.
Differential cross section as a function of the 4th leading jet PT for events with jet multiplicity >= 4.
Differential cross section as a function of the scalar sum of the jet PTs (HT) for events with jet multiplicity >= 2.
Differential cross section as a function of the scalar sum of the jet PTs (HT) for events with jet multiplicity >= 3.
Differential cross section as a function of the scalar sum of the jet PTs (HT) for events with jet multiplicity >= 4.
3-to-2 jet differential cross section ratio as a function of the leading jet PT for a minimum non-leading jet PT of 60 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT for a minimum non-leading jet PT of 80 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT for a minimum non-leading jet PT of 110 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT with R=0.4 for a minimum non-leading jet PT of 60 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT with R=0.4 for a minimum non-leading jet PT of 80 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT with R=0.4 for a minimum non-leading jet PT of 110 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the sum of the PTs of the two leading jets with R=0.6. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the sum of the PTs of the two leading jets with R=0.4. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The inclusive J/psi production cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/psi, using 2.3 pb-1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| < 2.4 giving the widest reach of any measurement of J/psi production to date. The differential production cross-sections of prompt and non-prompt J/psi are separately determined and are compared to Colour Singlet NNLO*, Colour Evaporation Model, and FONLL predictions.
Total cross section for inclusive andd non-prompt J/PSI (-> MU+MU-) production in the range |y| < 2.4 and pT > 7 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Total cross section for inclusive and non-prompt J/PSI (-> MU+MU-) production in the range 1.5 < |y| < 2 and pT > 1 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 2<|y|<2.4. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 1.5<|y|<2. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 0.75<|y|<1.5. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin |y|<0.75. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity |y|<0.75 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.}.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 1.5<|y|<2 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 2<|y|<2.4 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta =+/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity |y|<0.75 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 1.5<|y|<2 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 2<|y|<2.4 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity |y|<0.75. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 1.5<|y|<2. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 2<|y|<2.4. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Unweighted J/psi candidate yields in bins of $J/psi transverse momentum and rapidity. Uncertainties are statistical only.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 2<|y|<2.4. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J\psi.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 1.5<|y|<2. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 0.75<|y|<1.5. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute rapidities within |y|<0.75. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin |y|<0.75, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 0.75<|y|<1.5, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 1.75<|y|<2.0, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 2.0<|y|<2.4, as a function of the J/psi pT.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.