We present measurements from events with two isolated prompt photons in p¯p collisions at √s =1.8 TeV. The differential cross section, measured as a function of transverse momentum (PT) of each photon, is about 3 times what next-to-leading-order QCD calculations predict. The cross section for photons with PT in the range 10–19 GeV is 86±27(stat)−23+32(syst) pb. We also study the correlation between the two photons in both azimuthal angle and PT. The magnitude of the vector sum of the transverse momenta of both photons, KT=‖PT1+PT2‖, has a mean value of 〈KT〉=5.1±1.1 GeV.
No description provided.
No description provided.
Vector sum of the photons transvserse momenta.. Errors contain both statistics and systematics.. Data read from plots.
The distribution of particles in three-jet events is compared with the predictions of three fragmentation models currently in use: the Lund string model, the Webber cluster model, and an independent fragmentation model. The Lund model and, to a certain extent, the Webber model provide reasonable descriptions of the data. The independent fragmentation model does not describe the distribution of particles at large angles with respect to the jet axes. The results provide evidence that the sources of hadrons are Lorentz boosted with respect to the overall c.m.
No description provided.