Date

Measurement of B meson production fraction ratios in proton-proton collisions at $\sqrt{s}$ = 13 TeV using open-charm and charmonium decays

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-21-007, 2026.
Inspire Record 3118755 DOI 10.17182/hepdata.158357

Production fraction ratios of B$^+$, B$^0$, and B$^0_\mathrm{s}$ mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV using a special data set recorded in 2018 with high-rate triggers designed to collect an unbiased sample of $10^{10}$ b hadrons with the CMS experiment at the LHC. These data allow the use of the open-charm decays of B mesons (B$_\mathrm{(s)}$$\to$$π$D$_\mathrm{(s)}$) where the D meson decays into fully hadronic final states. Production fraction ratios as functions of B meson transverse momentum ($p_\mathrm{T}$) and rapidity ($y$) are measured using the open-charm decays in the kinematic range of 8 $\lt$$p_\mathrm{T}$$\lt$ 60 GeV and $\lvert y \rvert$$\lt$ 2.25. In addition, the same data are used to measure the relative production fraction ratios with the charmonium decay channels (B$_\mathrm{(s)}$$\to$ X$\,$J/$ψ$ with X indicating a K$^+$, K$^*$(892)$^0$, or $ϕ$(1020) meson) with the J/$ψ$ meson decaying into a pair of muons. By utilizing known branching fractions, precision theoretical calculations, and the open-charm results, the production fraction ratios in the charmonium samples are determined with an absolute normalization for the first time. These results also improve several world-average values of the ratios of branching fractions of B meson decays to charmonium and open-charm states. Finally, we test isospin invariance in B meson production in proton-proton collisions and observe that it holds within the experimental precision.

32 data tables

The invariant mass distribution of $B^+$ candidates, corrected using the $D^0$ meson mass, is shown for $13 < p_{T} < 18$ GeV along with the corresponding fit.

The invariant mass distribution of $B^0$ candidates, corrected using the $D^-$ meson mass, is shown for $18 < p_{T} < 23$ GeV along with the corresponding fit.

The invariant mass distribution of $B_s^{0}$ candidates, corrected using the $D^-_{s}$ meson mass, is shown for $23 < p_{T} < 28$ GeV along with the corresponding fit.

More…

Observation of $Υ$(1S) + Z associated production and measurement of the effective double-parton scattering cross section in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-23-007, 2026.
Inspire Record 3115234 DOI 10.17182/hepdata.159753

The observation of associated production of an $Υ$(1S) meson with a Z boson and a measurement of the ratio of its fiducial cross section to the fiducial cross section of the Z boson are presented. Both the $Υ$(1S) meson and the Z boson are identified via decays into a pair of opposite-sign muons. The analysis is based on proton-proton (pp) collision data at $\sqrt{s}$ = 13 TeV, collected with the CMS detector in 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. Using the production of the Z boson decaying into four muons as a normalization channel, the ratio of the fiducial cross sections $σ$(pp $\to$ Z $+$$Υ$(1S))$\mathcal{B}$(Z $\to$$μ^+μ^-$)$\mathcal{B}$($Υ$(1S) $\to$$μ^+μ^-$ ) to $σ$(pp $\to$ Z)$\mathcal{B}$(Z $\to$ 4$μ$) is measured to be $\mathcal{R}_{\mathrm{Z+Υ}\mathrm{(1S)}}$ = (21.1 $\pm$ 55 (stat) $\pm$ 0.6 (syst) $\times$ 10$^{-3}$), where stat and syst denote the statistical and systematic uncertainties, respectively. The result is used to extract the effective double-parton scattering cross section $σ_\text{eff}$ = 13.0$^{+7.7}_{-3.4}$. In addition, for the first time, $σ_\text{eff}$ is measured in bins of the transverse momentum of the $Υ$(1S) meson or of the Z boson.

9 data tables

$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

DPS $\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

$\sigma(\mathrm{pp}\to\mathrm{Z+Y(1S)})\mathcal{B}(\mathrm{Z}\to\mu\mu)\mathcal{B}(\mathrm{Y(1S)}\to\mu\mu) / \sigma(\mathrm{pp}\to\mathrm{Z})\mathcal{B}(\mathrm{Z}\to\mu\mu\mu\mu)$

More…

Measurement of the Z$γ$ production cross section and search for anomalous neutral triple gauge couplings in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-009, 2026.
Inspire Record 3109635 DOI 10.17182/hepdata.167736

A measurement of the fiducial cross section of the associated production of a Z boson and a high-$p_\mathrm{T}$ photon, where the Z decays to two neutrinos, and a search for anomalous triple gauge couplings are reported. The results are based on data collected by the CMS experiment at the LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV during 2016$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The fiducial Z$γ$ cross section, where a photon with a $p_\mathrm{T}$ greater than 225 GeV is produced in association with a Z, and the Z decays to a $ν\barν$ pair (Z($ν\barν$)$γ$), is measured to be 23.3$^{+1.4}_{-1.3}$ fb, in agreement, within uncertainties, with the standard model prediction. The differential cross section as a function of the photon $p_\mathrm{T}$ has been measured and compared with standard model predictions computed at next-to-leading and at next-to-next-to-leading order in perturbative quantum chromodynamics. Constraints have been placed on the presence of anomalous couplings that affect the ZZ$γ$ and Z$γγ$ vertex using the $p_\mathrm{T}$ spectrum of the photons. The observed 95% confidence level intervals for $CP$-conserving $h_3^γ$ and $h_4^γ$ are determined to be ($-$3.4, 3.5) $\times$ 10$^{-4}$ and ($-$6.8, 6.8) $\times$ 10$^{-7}$, and for $h_3^\mathrm{Z}$ and $h_4^\mathrm{Z}$ they are ($-$2.2, 2.2) $\times$ 10$^{-4}$ and ($-$4.1, 4.2) $\times$ 10$^{-7}$, respectively. These are the strictest limits to date on $h_3^γ$, $h_3^\mathrm{Z}$ and $h_4^\mathrm{Z}$.

5 data tables

Post-fit reconstruction-level photon transverse momentum $p_{T}^{\gamma}$ distribution in the ECAL barrel signal region. The yields correspond to the post-fit expectation from the maximum-likelihood fit used in the analysis, with uncertainties reflecting the post-fit total (stat+syst) uncertainty per bin. Data correspond to the full Run-2 dataset (138 fb$^{-1}$ at $\sqrt{s}=13$ TeV).

Post-fit reconstruction-level photon transverse momentum $p_{T}^{\gamma}$ distribution in the ECAL endcaps signal region. The yields correspond to the post-fit expectation from the maximum-likelihood fit used in the analysis, with uncertainties reflecting the post-fit total (stat+syst) uncertainty per bin. Data correspond to the full Run-2 dataset (138 fb$^{-1}$ at $\sqrt{s}=13$ TeV).

Measured and predicted fiducial cross sections (fb) in the EB, EE, and combined phase space. The fiducial phase space definition follows the analysis selection in the paper. Predictions are shown at NLO (MADGRAPH5_aMC@NLO) and NNLO (MATRIX).

More…

Search for lepton-number-violating $B^-\to D^{(*)+}μ^-μ^-$ decays

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
LHCb-PAPER-2025-033, 2026.
Inspire Record 3103133 DOI 10.17182/hepdata.167818

A search is performed for lepton-number-violating $B^-\to D^{(*)+}μ^-μ^-$ decays, using data collected by the LHCb experiment in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb$^{-1}$. No significant signal is observed, and upper limits are set on the branching fractions, ${\cal B}(B^-\to D^{+}μ^-μ^-) < 4.6 \times 10^{-8}$ and ${\cal B}(B^-\to D^{*+}μ^-μ^-) < 5.9 \times 10^{-8}$, at the 95% confidence level.

2 data tables

Binned efficiencies across the Dalitz plane for $B^- \to D^{+} \mu^- \mu^-$ decay. Here $\mu_1^-$ and $\mu_2^-$ represent the two muons produced in the decay, and the index specifies their ordering in transverse momentum. Efficiencies are normalized to the average over the full simulated sample.

Binned efficiencies across the Dalitz plane for $B^- \to D^{*+} \mu^- \mu^-$ decay. Here $\mu_1^-$ and $\mu_2^-$ represent the two muons produced in the decay, and the index specifies their ordering in transverse momentum. Efficiencies are normalized to the average over the full simulated sample.


Search for a boosted Higgs boson decaying to bottom quark pairs in association with a W or Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIG-24-017, 2026.
Inspire Record 3100284 DOI 10.17182/hepdata.167436

A search is conducted for standard model Higgs bosons with large transverse momentum ($p_\mathrm{T}$) decaying to bottom quark pairs and produced in association with a hadronically decaying W or Z boson at the LHC. The result is based on a dataset of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector in 2016$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Boosted Higgs, W, and Z boson decays are reconstructed using large-radius jets with $p_\mathrm{T}$$\gt$ 450 GeV and identified with heavy-flavor classifiers based on a graph convolutional neural network. The observed signal strength relative to the standard model expectation is $μ$ = 0.7$2^{+0.75}_{-0.71}$ including statistical and systematic uncertainties.

2 data tables

Post-fit distributions for Signal and Background processes.

Fitted signal strengths


Search for ttbar resonances in final states with exactly one or two leptons using 140 fb$^{-1}$ of pp collision data at $\sqrt{s}=13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-281, 2025.
Inspire Record 3094414 DOI 10.17182/hepdata.168229

A search for heavy spin-1 and spin-2 resonances decaying into a top-antitop-quark pair has been performed with 140 fb$^{-1}$ of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s}=13$ TeV. Final states with either exactly one electron or muon, or exactly two leptons ($ee$, $μμ$ or $eμ$), large missing transverse momentum, and two jets, at least one of which must be identified as likely containing a b-hadron decay, are considered. The search targets resonances with both narrow and broad widths relative to the detector resolution, and with masses in the range of 0.4-5.0 TeV. No significant deviation from the Standard Model prediction is observed. Exclusion limits are set on the production cross-section times branching ratio for hypothetical $Z'$ bosons, Kaluza-Klein gravitons, and Kaluza-Klein gluons that decay into top-quark pairs.

21 data tables

Selection efficiency times acceptance (Eff x Acc) for the ljets final state as a function of the tt&#772; invariant mass at the parton level before the emission of FSR, for the (a) Z', (b) G<sub>KK</sub>, and (c) g<sub>KK</sub> signals. The selections in the resolved topology only (short-dashed magenta), the merged topology only (dashed blue) and the inclusive topology (solid black) are shown. The error bars correspond to the statistical uncertainty. All tt&#772; decay modes are considered.

Selection efficiency times acceptance (Eff x Acc) for the ljets final state as a function of the tt&#772; invariant mass at the parton level before the emission of FSR, for the (a) Z', (b) G<sub>KK</sub>, and (c) g<sub>KK</sub> signals. The selections in the resolved topology only (short-dashed magenta), the merged topology only (dashed blue) and the inclusive topology (solid black) are shown. The error bars correspond to the statistical uncertainty. All tt&#772; decay modes are considered.

Selection efficiency times acceptance (Eff x Acc) for the ljets final state as a function of the tt&#772; invariant mass at the parton level before the emission of FSR, for the (a) Z', (b) G<sub>KK</sub>, and (c) g<sub>KK</sub> signals. The selections in the resolved topology only (short-dashed magenta), the merged topology only (dashed blue) and the inclusive topology (solid black) are shown. The error bars correspond to the statistical uncertainty. All tt&#772; decay modes are considered.

More…

Measurement of Z$γ$ production in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV and constraints on neutral triple gauge couplings

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-24-002, 2025.
Inspire Record 3091053 DOI 10.17182/hepdata.166443

A measurement of the Z$γ$ production cross section in proton-proton collisions at a center-of-mass energy of 13.6 TeV is presented. Data corresponding to an integrated luminosity of 34.8 fb$^{-1}$, collected by the CMS experiment at the LHC in 2022 are used. Events with an oppositely charged pair of muons or electrons, with an invariant mass corresponding to a Z boson, together with an isolated photon are selected. The measured fiducial cross section for the combined electron and muon channels is 1.896 $\pm$ 0.033 (stat) $\pm$ 0.05 (syst) $\pm$ 0.006 (theo) pb, in agreement with the standard model prediction of 1.922 $\pm$ 0.094 pb. Constraints on neutral triple gauge couplings generated by dimension-8 operators in a recently proposed effective field theory framework are determined for the first time.

4 data tables

Histograms represent the post-fit distribution of $mass_{\mu^+\mu^-\gamma}$. The number of signal and background are associated with the total uncertainty, and the number of data events are associated with the poisson errors. The last bins include overflow events.

Histograms represent the post-fit distribution of $mass_{e^+e^-\gamma}$. The number of signal and background are associated with the total uncertainty, and the number of data events are associated with the poisson errors. The last bins include overflow events.

Expected and observed 95% CL limits on nTGC parameters for the combination of the measurements in the electron and muon channels. The first three rows show the results using the VPM that preserves only the U(1)EM symmetry, while the last three rows show the results from the GSPM that preserves the SU(2)L x U(1)Y symmetry. Corresponding to Table 3 in the paper.

More…

Version 2
Searches for Light Dark Matter and Evidence of Coherent Elastic Neutrino-Nucleus Scattering of Solar Neutrinos with the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Akerib, D.S. ; Al Musalhi, A.K. ; Alder, F. ; et al.
2025.
Inspire Record 3091049 DOI 10.17182/hepdata.167350

We present searches for light dark matter (DM) with masses 3-9 GeV/$c^2$ in the presence of coherent elastic neutrino-nucleus scattering (CE$ν$NS) from $^{8}$B solar neutrinos with the LUX-ZEPLIN experiment. This analysis uses a 5.7 tonne-year exposure with data collected between March 2023 and April 2025. In an energy range spanning 1-6 keV, we report no significant excess of events attributable to dark matter nuclear recoils, but we observe a significant signal from $^{8}$B CE$ν$NS interactions that is consistent with expectation. We set world-leading limits on spin-independent and spin-dependent-neutron DM-nucleon interactions for masses down to 5 GeV/$c^2$. In the no-dark-matter scenario, we observe a signal consistent with $^{8}$B CE$ν$NS events, corresponding to a $4.5σ$ statistical significance. This is the most significant evidence of $^{8}$B CE$ν$NS interactions and is enabled by robust background modeling and mitigation techniques. This demonstrates LZ's ability to detect rare signals at keV-scale energies.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Search for light sterile neutrinos with two neutrino beams at MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Andrade Aldana, D. ; Arellano, L. ; et al.
Nature 648 (2025) 64-69, 2025.
Inspire Record 3088922 DOI 10.17182/hepdata.166435

<jats:title>Abstract</jats:title> <jats:p> The existence of three distinct neutrino flavours, <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> , <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> and <jats:italic>ν</jats:italic> <jats:sub>τ</jats:sub> , is a central tenet of the Standard Model of particle physics <jats:sup>1,2</jats:sup> . Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino, <jats:italic>ν</jats:italic> <jats:sub>s</jats:sub> (refs.  <jats:sup>3–9</jats:sup> ). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND) <jats:sup>3</jats:sup> experiment and Mini-Booster Neutrino Experiment (MiniBooNE) <jats:sup>4,5</jats:sup> , consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber <jats:sup>10</jats:sup> in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly <jats:sup>6–8</jats:sup> . This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy between <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> appearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for either <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> flavour transitions or <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> disappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions cannot be explained by introducing a single sterile neutrino state. </jats:p>

3 data tables

14 observation channels used in this analysis. The first 7 channels correspond to the BNB, while the last 7 channels correspond to the NuMI beam. Each set of seven channels is split by reconstructed event type as well as containment in the detector, fully contained (FC) or partially contained (PC). The seven channels in order are $\nu_e$CC FC, $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.

Four $\nu_e$CC observation channels, after constraints from 10 $\nu_\mu$CC and NC $\pi^0$ channels. The four channels in order are BNB $\nu_e$CC FC, BNB $\nu_e$CC PC, NuMI $\nu_e$CC FC, and NuMI $\nu_e$CC PC. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.

14 channel covariance matrix showing uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties have not been included, but they can be calculated with the Combined Neyman-Pearson (CNP) method. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.


Measurements of electroweak production of a photon in association with two jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-19-005, 2025.
Inspire Record 3088047 DOI 10.17182/hepdata.167074

The first observation of electroweak production of a photon in association with two forward jets in proton-proton collisions is presented. The measurement uses data recorded by the CMS experiment at the LHC during 2016$-$2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis is performed in a region enriched in photon production via vector boson fusion, with a requirement on the transverse momentum of the photon to exceed 200 GeV. The cross section is measured to be 202$^{+36}_{-32}$ fb, at a significance with respect to the null hypothesis that exceeds five standard deviations. This is in agreement with the standard model prediction of 177$^{+13}_{-12}$ fb. Differential cross sections are measured as a function of various observables. Limits are set on dimension-6 effective field theory operators that contribute to the WW$γ$ interaction. The observed 95% confidence intervals for the corresponding Warsaw basis Wilson coefficients $c_\mathrm{W}$ and $c_\mathrm{HWB}$ are [$-$0.11, 0.16] and [$-$1.6, 1.5], respectively.

12 data tables

Summary of uncertainties affecting the measurement as extracted from the fit to data. The total uncertainty is obtained by adding individual contributions in quadrature.

The rapidity gap fraction as a function of $p_{\mathrm{T}^{veto}}$ in data and simulated samples for EW $\gamma$jj and QCD $\gamma$jj. The black points with error bars represent the data and their statistical uncertainties. The theory prediction, calculated using Madgraph5_aMC@NLO version 2.6.5 at NLO in QCD together with PYTHIA version 8.240, as well as MC statistical uncertainties are shown by the colored band.

Normalized differential cross sections, compared with the SM predictions, as a function of the absolute value of pseudorapidity of the leading jet in transverse momentum. The SM predictions are obtained using Madgraph5_aMC@NLO version 2.6.5 at NLO in QCD with PYTHIA version 8.240

More…