Measurements of the differential cross section for the process γ+p→π0+p have been made at eight pion center-of-mass angles in the range 51-135° and for incident photon energies from approximately 600-1200 MeV. The bremsstrahlung photon beam used was obtained from the California Institute of Technology electron synchrotron. Both the recoil proton and one γ ray from the decay of the π0 were detected. The incident photon energy was determined by measuring the laboratory angle and time of flight of the recoil proton. The angular distributions obtained indicate that the third pion-nucleon resonance is predominantly a D(52) resonance excited by a magnetic quadrupole transition. It can also be concluded that any contribution to the π0 photoproduction cross section from a virtual vector-meson exchange process is probably negligible in the region of the second and third pion-nucleon resonances.
No description provided.
No description provided.
No description provided.
Cross sections for the photoproduction of neutral pions have been measured at the 1.1-GeV Frascati electron synchrotron for bombarding photon energies k between 400 and 800 MeV and for π0 c.m. angles of θπ*=90∘, 120∘, and 135∘. The main feature of the experiment is good resolution in incident photon energy. The results are in good agreement with the existing theories in the energy range of 450 to 550 MeV. The cross sections exhibit a smooth behavior as a function of energy for k=400−600 MeV. No immediate evidence is found of a contribution of the P11 resonance. An anomaly at the limit of statistical significance appears for k≃700−740 MeV, indicating a possible structure of the so-called second resonance. We attempt to interpret the observed anomaly as a reflection of the sharp opening of the η production channel (η cusp effect).
No description provided.
We have performed an experiment to study the reaction π−+p→η+n near threshold, preliminary to a forthcoming measurement of charge asymmetry in η-meson decay. The η was identified by the velocity of the associated neutron. We detected neutrons produced in the forward hemisphere in the center-of-mass system corresponding to the most energetic neutrons in the laboratory. Data were taken at π− momenta between 670 and 805 MeVc. The four neutron detectors made it possible to detect neutrons at angles of 0° to 21° from the incident pion beam. We present backward differential cross sections for both pion charge exchange and η production calculated from the data. We looked for η′ at pion momenta of 1.5 BeVc and observed none. We obtained σ(π−p→nη′)≤60 μb.
No description provided.
No description provided.
No description provided.
The differential cross section for the reaction γ+p→π+n was measured at 19 photon energies between 300 and 750 MeV in the laboratory frame, for pion angles between 0° and 130° in the c.m. system. The pions were analyzed in angle and momentum with a magnetic spectrometer and detected by a counter telescope. The 0° measurements could be achieved, in spite of the excessive positron rate, owing to a mass-spectrometer arrangement. No direct indication for the electromagnetic excitation of the P11 resonance (1466 MeV) was found. Comparison is made with theoretical calculations of π+ photoproduction.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Measurements of the ratio (R) of positron-proton and electron-proton elastic-scattering cross sections have been made, with the square of the four-momentum transfer (q2) equal to 0.20, 0.69, 0.73, 1.54, 2.44, 3.27, 3.79, and 5.00 (GeV/c)2. The measurements, after radiative corrections, are consistent with R=1, with standard errors ranging from ±0.016 to ±0.123. The results give limits for the size of the two-photon effects.
No description provided.
No description provided.
The transmission regeneration amplitude after a thick copper block has been measured. The quantity {∣ƒ(0)- overlineƒ(0)∣ }/{k} varies from 20.0 $\pm$ 1.4 mb at 2.75 GeV/c to 13.6 $\pm$ 1.2 mb at 7.25 GeV/c. Results are in agreement with optical model calculations in which real and imaginary parts of the amplitudes for single nucleon scattering are determined from forward dispersion relations and total cross-sections.
Regeneration amplitude.
Angular distributions are presented for p¯−p elastic scattering at 8 and 16 GeV/c for |t|<1.3 (GeV/c)2. At both energies there is structure in the differential cross sections in the region 0.5<~|t|<~1.0 (GeV/c)2, similar to that observed at lower energies. The diffraction peak continues to expand with increasing incident momentum.
No description provided.
No description provided.
No description provided.
Elastic scattering of p¯ on p has been studied for cosθc.m. between -0.88 and -1.0 and Plab(p¯) between 0.70 and 2.16 GeV/c. The momentum dependence of the cross section shows a sharp dip at 0.9 GeV/c and a broad peaking around 1.4 GeV/c. The possibility of the peak resulting from direct formation of boson resonances has been studied. Alternatively, a diffraction model agrees qualitatively with our data and other elastic data at different angles.
'1'. '2'. '3'.
No description provided.
No description provided.
Polarization and differential cross-section data at 0.86, 0.97, 1.09, 1.37 and 1.45 GeV c are presented. An energy-independent phase-shift analysis from threshold up to 1.45 GeV c using random searches at 19 momenta and the shortest path method to link solutions at different momenta, yields three solutions. One of these is unlikely; the other two coincide up to 0.86 GeV c , and both show an anticlockwise half-circle in the P 3 -wave.
No description provided.