The differential cross sections for the photoproduction reactions γ+p→π++n, γ+p→K++Λ0, and γ+p→K++Σ0 have ben measured for incident laboratory photon energies between 3.4 and 4.0 GeV and for meson center-of-mass angles from about 25° to 45°. The reactions were studied by observing only the charged mesons. The momenta, velocities, and angles of the mesons were measured with a magnetic spectrometer, and the equivalent of nearly monochromatic gamma rays was obtained by performing bremsstrahlung subtractions. The cross sections agree with the inequality predicted from unbroken SU(3). The measured behavior of dσdt as a function of t shows similarities to that observed in studies of mesonnucleon scattering.
No description provided.
No description provided.
No description provided.
We report a high-statistics study of the reaction p+W→μ++μ−+X with use of an intense 400-GeV/c proton beam, a magnetized-iron beam dump, and a wide-acceptance detector. Using data near xF=0, we have extracted the nucleon sea-quark distribution and find it to be a factor 1.6±0.3 larger than that obtained by inelastic charged-current neutrino scattering. We then compare the Drell-Yan prediction with our data including the previously unexplored region of large xF and find excellent agreement for a wide range of μ-pair invariant mass.
Dimuon mass mass distribution at XFP=0.1.
Dimuon production for varying mass as function of XFP.
Dimuon production for varying mass as function of XFP.
None
No description provided.
No description provided.
No description provided.
The production of ψ(3.1) mesons is reported for the reactions π−+Fe→μ++μ−+anything, at 200 GeV, and p+Fe→μ++μ−+anything, at 240 GeV. For ψ production, distributions in x≡PLPbeam and P⊥ are given. For x>~0.5, the ratio of the ψ production cross sections in iron for pions to that for protons is found to be 7.4±2.0.
No description provided.
No description provided.
CDB=THESE DATA TO BE MULTIPLIED BY FACTOR 10.0.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
We present results on the production of high transverse momentum pizero and eta mesons in pp and pBe interactions at 530 and 800 GeV/c. The data span the kinematic ranges: 1 < p_T < 10 GeV/c in transverse momentum and 1.5 units in rapidity. The inclusive pizero cross sections are compared with next-to-leading order QCD calculations and to expectations based on a phenomenological parton-k_T model.
Invariant differetrial cross sections/nucleon for the inclusive reaction p Be --> pi0 X at 530 and 800 GEV, averaged over the c.m. rapidity interval -0.75 to 0.75 and -1.0 to 0.5 respectively.
Invariant differetrial cross sections/nucleon for the inclusive reaction p p --> pi0 X at 530 and 800 GEV, averaged over the c.m. rapidity interval -0.75 to 0.75 and -1.0 to 0.5 respectively.
The averaged invariant differential cross section/nucleon as a function of rapidity in the PT intervals 1.0-1.5, 1.5-2.0 and 2.0-2.5 GeV for the inclusive reaction p BE --> pi0 X at 530 and 800 GeV GeV.
Angular distributions are presented for p¯−p elastic scattering at 8 and 16 GeV/c for |t|<1.3 (GeV/c)2. At both energies there is structure in the differential cross sections in the region 0.5<~|t|<~1.0 (GeV/c)2, similar to that observed at lower energies. The diffraction peak continues to expand with increasing incident momentum.
No description provided.
No description provided.
No description provided.
The differential cross section for the photoproduction of a π− meson from the neutron bound in the deuteron was measured for pion laboratory angles of 76°, 96°, and 118° at incident gamma-ray energies in the region of 275 MeV. The π− meson and the high-energy proton were detected. The pion momentum and angle were measured by sets of spark chambers situated in front of and behind a magnetic field. The proton angle and range were also measured with spark chambers. To calculate "free" neutron cross sections from our data, we used a modified version of the extrapolation method suggested by Chew and Low. By observing the π+ only, the differential cross section for π+ photoproduction from hydrogen also was measured. As determined by this experiment, the differential cross section for photoproduction of a π− meson from a "free" neutron and the differential cross section for photoproduction of a π+ meson from hydrogen are as follows: Eγlab≃275 MeV These results disagree with the dispersion theory predictions of Chew, Goldberger, Low, and Nambu. They also disagree with McKinley's dispersion theory calculations which include a bipion or ρ-meson term in the production amplitudes.
No description provided.
No description provided.