Measurement of inclusive Lambda production in electron - positron interactions at the upsilon energies

Blinov, A.E. ; Blinov, V.E. ; Bondar, A.E. ; et al.
Z.Phys.C 62 (1994) 367-370, 1994.
Inspire Record 362599 DOI 10.17182/hepdata.14205

Using the MD-1 detector at the VEPP-4e+e− strorage ring we have measured the inclusive Λ and370-1 production rates in direct Γ(1S) decays

4 data tables match query

Lambda x spectrum in direct upsilon(1S) decay.

Lambda multiplicity in direct upsilon(1S) decays.

Lambda multiplicity in surrounding continuum.

More…

The Measurement of R in e+ e- annihilation at center-of-mass energies between 7.2-GeV and 10.34-GeV

Blinov, A.E. ; Blinov, V.E. ; Bondar, A.E. ; et al.
Z.Phys.C 70 (1996) 31-38, 1996.
Inspire Record 364141 DOI 10.17182/hepdata.14321

The total cross section of the processe+e− →hadrons has been measured in the center-of-mass energy range between 7.25 and 10.34 GeV using the MD-1 detector at the VEPP-4 collider. The ratioR=σ(e+e− →hadrons)/σ(e+e− →μ+μ−) was found to be constant in this energy range with the average value of 3.58±0.02±0.14.

2 data tables match query

Statistical errors only.

Mean value of R in the range 7.25 to 10.34 GeV.


LAMBDA (1520) PRODUCTION IN NEUTRON - NUCLEON INTERACTIONS AT approximately 40-GeV NEUTRON ENERGY

Krastev, V.R. ; Aleev, A.N. ; Arefev, V.A. ; et al.
JINR-P1-88-31, 1988.
Inspire Record 261871 DOI 10.17182/hepdata.9450

None

6 data tables match query

AVERAGE OVER ALL TARGETS.

No description provided.

No description provided.

More…

Production of anti-D0 and D- Mesons in Neutron - Carbon Interactions at 40-GeV to 70-GeV

The BIS-2 collaboration Aleev, A.N. ; Arefev, V.A. ; Balandin, V.P. ; et al.
Z.Phys.C 37 (1988) 243, 1988.
Inspire Record 248611 DOI 10.17182/hepdata.9960

The production of\(\bar D\) mesons in neutroncarbon interactions at 40–70 GeV/c has been investigated. The\(\bar D\) mesons were detected via the hadronic decay modes\(\bar D^0\to K^{* + } (892)\pi ^ -\) andD−→K*+(892)π−π−. In the kinematical regionxF>0.5 andpT<1 GeV/c the following inclusive cross sections were measured:\(\sigma _{\bar D^0 }= (28 \pm 14)\mu b\) and\(\sigma _{D^ -}= (28 \pm 13)\mu b\) per carbon nucleus. The invariant longitudinal momentum spectra can be described by (1−x)N with\(N_{\bar D^0 }= 1.1 \pm 0.5 \pm 0.4\) and\(N_{D^ -}= 0.8 \pm 0.4 \pm 0.4\) The transverse momentum spectra were parametrized by exp (−BpT2) with\(B_{\bar D^0 }= (1.2_{ - 0.9}^{ + 1.1} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \) and\(B_{D^ -}= (1.8_{ - 1.0}^{ + 1.3} )({{GeV} \mathord{\left/ {\vphantom {{GeV} c}} \right. \kern-\nulldelimiterspace} c})^{ - 2} \).

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Local particle densities and global multiplicities in central heavy ion interactions at 3.7-A/GeV, 14.6-A/GeV, 60-A/GeV and 200-A/GeV

The EMU01 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.C 56 (1992) 509-520, 1992.
Inspire Record 334794 DOI 10.17182/hepdata.9290

The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parametrizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200A GeV incident energy, respectively, σ is found to be independent of the size of the interacting system at fixed energy. A novel way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined.

4 data tables match query

No description provided.

NUCLEUS IS AGBR, CENTRAL EVENTS.

No description provided.

More…

Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

16 data tables match query

Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.

Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.

Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.

More…

Total cross-section of two photon production of hadrons

Baru, S.E. ; Beilin, M.V. ; Blinov, A.E. ; et al.
Z.Phys.C 53 (1992) 219-224, 1992.
Inspire Record 33675 DOI 10.17182/hepdata.14767

The total cross section for γγ→hadrons was measured as a function of the invariant massW of the system (1.25 to 4.25 GeV) at thee+e−-collider VEPP-4 with the detector MD-1. For the first time the data were obtained by detecting both scattered leptons with almost zero emission angles. The mean squared four momentum transfer 〈q2〉 is −0.005 GeV2, the rmsW resolution is 100–250 MeV. The data on the mean charged multiplicity 〈nC〉 are well described by the function 〈nC〉=(1.62 ±0.37)+(1.83±0.45)·ln(W(GeV)). TheW dependence of the total cross section is consistent with the theoretical prediction σ(nb)=240+270/W(GeV).

2 data tables match query

No description provided.

No description provided.


Pion pair production in photon-photon collisions

Blinov, A.E. ; Blinov, V.E. ; Bondar, A.E. ; et al.
Z.Phys.C 53 (1992) 33-39, 1992.
Inspire Record 335707 DOI 10.17182/hepdata.14772

The process γγ→π+π− was measured using the detector MD-1 at VEPP-4. The two-photon reactionse+e−, μ+ μ− and π+ π− pair production were separated using scintillation counters, Cherenkov counters and shower-range chambers. A radiation widthГγγ(f2(1270))=3.1±0.35±0.35 keV was obtained.

1 data table match query

Data read from graph.


Measurement of electroweak parameters from hadronic and leptonic decays of the Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 51 (1991) 179-204, 1991.
Inspire Record 314418 DOI 10.17182/hepdata.14940

From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).

15 data tables match query

Additional systematic uncertainty of 0.4 pct.

Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.

Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.

More…

Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables match query

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.