An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
We present results obtained from a study of the structure of hadronic events recorded by the L3 detector at various centre-of-mass energies. The distributions of event shape variables and the energy dependence of their mean values are measured from 30GeV to 189GeV and compared with various QCD models. The energy dependence of the moments of event shape variables is used to test a power law ansatz for the non-perturbative component. We obtain a universal value of the non-perturbative parameter alpha_0 = 0.537 +/- 0.073. From a comparison with resummed O(alpha_s^2) QCD calculations, we determine the strong coupling constant at each of the selected energies. The measurements demonstrate the running of alpha_s as expected in QCD with a value of alpha_s(m_Z) = 0.1215 +/- 0.0012 (exp) +/- 0.0061 (th).
Distribution for THRUST at c.m. energy 189 GeV.
Distribution for Heavy Jet Mass at c.m. energy 189 GeV.
Distribution for Total Jet Broadening at c.m. energy 189 GeV.
Total cross sections for Sigma- and pi- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c. These measurements were performed with a transmission technique adapted to the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for sigma_tot(Sigma- N) and sigma_tot(pi- N), which were deduced from nuclear cross sections.
Results for nuclear total cross sections.
Average total cross sections for nucleon targets deduced from the nuclear target data, at the average beam momentum.
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50 GeV and 170 GeV, and 20 GeV and 140 GeV, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of 232.2 pb −1 . A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling λ for the on-shell production of an excited electron e ★ decaying into a γ e pair in the mass range 20 GeV
Measured cross sections for radiative Bhabha scattering events.
Measured cross sections for the quasi-real Compton scattering events.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Mu-pair cross sections.
Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.
Forward-backward asymmetry.
We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.
We present high statistics measurements of the energy-energy correlation (EEC) and its related asymmetry (AEEC) ine+e− annihilation at a c.m. energy of 34.6 GeV. We find that the energy dependence as well as the large angle behaviour of the latter are well described by perturbative QCD calculations toOα(s2). Non-perturbative effects are estimated with the help of fragmentation models in which different jet topologies are separated using (ɛ, δ) cuts, and found to be small. The extracted values of\(\Lambda _{\overline {MS} }\) lie between 100 and 300 MeV.
Corrected energy-energy correlation data.
CORRECTED FORWARD-BACKWARD ASYMMETRY.
We have studied 419 τ pair events produced in the reactione+e−→τ+ τ− at a c.m. energy of 34.6 GeV. We measure the cross section and angular distribution, as well as the decay branching ratios. The production characteristics are consistent with the Standard Electroweak Model predictions of γ andZ0 interference. The branching ratios are generally consistent with the τ decaying according to standard weak interaction principles, but we observe somewhat more decays resulting in single charged hadrons plus neutrals than are predicted by present theory.
Corrected for radiative effects.
Measured cross section relative to Standard Model Prediction.
Asymmetry based on fits to angular distribution.
The differential cross section of the reactione+e−→e+e− at a c.m. energy of 34.7 GeV has been measured. The result, together with our previously measurede+e−→α+α− data, are compared with the standard model predictions. We obtain for the weak neutral current couplings the valuesgv2=0.09×0.06,ga2=0.38×0.08. A fit of the Weinberg mixing angle gives the valuegv2=0.09×0.06,ga2=0.038×0.08. The data are also used to set limits on possible deviations from the pointlike structure of leptons. An upper limit for thee+e− coupling to a heavy spin 0 boson is also given.
Fully corrected results for Bhabha scattering.
The differential cross section for Bhabha scattering.
??? CONSTANTS ???.
The total photon-photon cross section for the production of hadrons, σ γγ ( W , Q 2 ), has been measured in the single-tag condition for 0.1 < Q 2 < 1.0 GeV 2 and 1.5 < W < GeV. The results are based on 2929 multihadron events obtained with the PLUTO detector at PETRA. The Q 2 dependence of σ γγ average over W can be described by GVDM. The dependence of σ γγ on the mass W of the hadronic final state has been extracted at Q 2 = 0.44 GeV 2 by unfolding the effects of experimental resolution and acceptance. The cross section is found to rise at small W . The result is compared with VDM and the parton model.
No description provided.
DATA EXTRAPOLATED TO Q**2=0 USING THE GENERALIZED VECTOR MESON DOMINANCE MODEL (GVDM).