Cross sections have been measured for the reactions p¯p→π+π− and K+K− at 15 incident-beam momenta between 360 and 760 MeV/c with significantly better statistics than previous experiments in this momentum region. No significant structure has been found in either channel. The values of 90%-confidence-level upper limits for the possible resonance cross sections are given.
.
.
.
The reactions e + e − → μ + μ − and τ + τ − were measured at s =52 GeV and 55 GeV by using the TOPAZ detector at TRISTAN. For the combined data, the observed charge asymmetry is −0.29±0.13 and the total cross section is 27.9±3.0 (stat.)±0.8 (syst.) pb for μ + μ − production, and those for τ + τ − production are −0.20±0.14 and 35.7±4.3 (stat.)±2.4 (syst.)pb, respectively. These values are consistent with predictions by the standard model of electroweak interactions.
.
.
.
Differential cross sections for the processes e + e − → e + e − (Bhabha scattering) and e + e − → γγ have been measured with the TOPAZ detector at s =52 GeV . The results agree with the predictions of quantum electrodynamics (QED). The lower limits for the QED cut-off parameters have been obtained to be Λ + ⩾115 GeV and Λ − ⩾236 GeV for Bhabha scattering, and Λ + ⩾94 GeV and Λ − ⩾59 GeV for the reaction e + e − → γγ .
Statistical errors only.
Statistical errors only.
Ratio of experimental data to prediction for lowest order QED. Statistical errors only.
We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness.
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Results are presented from a study of the reaction p p→ Λ Λ near threshold. Over 3000 events recorded at s values 14.6 and 25.5 MeV above the Λ Λ threshold (2231.2 MeV) have been analysed. Results for the production cross section, differential cross section, and the Λ and Λ polarization are given at both energies and are compared with recent theoretical calculations of this process.
Statistical errors only.
No description provided.
No description provided.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Mu-pair cross sections.
Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.
Forward-backward asymmetry.
Polarization parameters for the π − p → π 0 n charge exchange scattering have been measured at eight beam momenta between 1965 and 4220 MeV/ c using two different experimental set-ups. The angular range covered is −0.90 < cos θ π ∗ < 0.95 at the five momenta of 1965, 2168, 2360, 2566 and 2960 MeV/ c , where θ π ∗ is the emission angle of the π 0 meson in the c.m.s.. For three momenta of 2770, 3490 and 4220 MeV/ c , the measurements cover the forward angles of 0.1 < cos θ π ∗ < 1.0 . The results are compared with the predictions of π N partial wave analyses.
Polarisation measurements from SETUP1. Errors are statistical only.
Polarisation measurements from SETUP2. Errors are statistical only.
Legendre polynomial coefficients for fit to differential cross section data.
Precise measurements of the differential cross sections on the π − p→ π 0 n charge exchange scattering have been performed at six incident beam momenta of 1969, 2172, 2370, 2569, 2767 and 2965 MeV/ c covering a wide angular range of −0.95 < cos θ π ∗ < 0.95, where θ π ∗ is an emission angle of π 0 meson in the c.m.s. The results are compared with predictions of recent partial wave analyses.
Total cross sections obtained by fitting the Legendre polynomials to the DCS data.
Statistical errors only. Cos(theta) bin width is +- 0.025.
The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.
PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).
The differential cross sections of p¯p elastic scattering have been measured at incident beam momenta of 390, 490, 590, 690, and 780 MeV/c. The results are compared with the predictions of various N¯N potential models. None of these models completely explains the present results.
No description provided.
Legendre expansion coefficients.