We present proton-nucleus dimuon-production cross sections for masses between 4 and 15 GeV, center-of-mass rapidities between -0.23 and 0.6 and incident energies of 200, 300, and 400 GeV. The data confirm scaling to the 20% level. The dependence of continuum 〈pT〉 on beam energy is also presented.
No description provided.
No description provided.
No description provided.
The recoil proton polarization for γ n → π − p was measured around the third resonance region. Both momentum vectors of the proton and the pion were determined by the magnetic spectrometers. The proton polarization was measured by means of proton-carbon scattering in the polarization analyzer located behind the proton spectrometer. Below 900 MeV incident photon energy, our data are consistent with the other existing experimental data ( θ π ∗ = 90° ) and the predictions of partial-wave analyses. Above 1000 MeV, however, a large discrepancy was observed between our data and the predictions of the partial-wave analyses. The discrepancy stands out as the pion c.m. angle increases. A new partial-wave analysis was made for γ n → π − p including our polarization data, and the accuracy of the experimentally determined electromagnetic coupling constant of the third resonances were greatly improved. In particular, a finite amount of the helicity 3 2 amplitude for the γ n → F 15 (1688) resonance was obtained against the predictions of the quark models, by Copley, Karl and Obryk and by Feynman, Kislinger and Ravendal but in agreement with the relativistic quark models of Sugimoto and Toya, and Kubota and Ohta.
No description provided.
None
ERRORS INCLUDE BY QUADRATIC ADDITION THE 5 PCT UNCERTAINTY IN THE CARBON ANALYSING POWER.
Neutral-pion production in pp interactions has been studied using 8000 photon conversions in the Fermilab 15-ft bubble chamber. Inclusive π0 multiplicity moments and ππ correlation integrals are presented; f200 is determined to be + 3.0±0.8. For the semi-inclusive π0 multiplicity distributions we find 〈n(π0)〉n− to increase with n−, while the dispersions are n− independent. Results on f2−0, f200, and f2,n−00 are compared to predictions of simple cluster models.
No description provided.
No description provided.
No description provided.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.
No description provided.
No description provided.
We have measured the spin-spin correlation parameter CLL=(L, L;0, 0) in p−p elastic scattering around θc.m.=90° from plab=1.0 to 3.0 GeV/c. We observe a rapid energy dependence in CLL and describe our interpretation of the results.
No description provided.
No description provided.
No description provided.
None
No description provided.
We report measurements of the inclusive π− and π+ yields in 24-GeV proton-proton collisions at θc.m.=90° for 2.2≤PT≤2.8 GeV/c. There is a high-PT deficit, rather than excess, at this incident energy.
THIS DATA IS FROM AN 'UNBIASED TRIGGER' WHICH RESPONDS TO ANY CHARGED PARTICLE.
THIS DATA IS FROM AN 'ELECTRON TRIGGER' WHICH RESPONDS ONLY TO PARTICLES THAT ARE ABOVE THRESHOLD IN > OR = 2 OF THE 3 CERENKOV COUNTERS IN THE LEAD- GLASS DETECTORS.
THIS DATA IS FROM AN 'ELECTRON TRIGGER' WHICH RESPONDS ONLY TO PARTICLES THAT ARE ABOVE THRESHOLD IN > OR = 2 OF THE 3 CERENKOV COUNTERS IN THE LEAD- GLASS DETECTORS.
The reaction π − p→ π + π − n has been measured in a high-statistics experiment on a transversely polarized proton target at 17.2 GeV, and unexpectedly large nucleon polarization effects have been observed. Combining the results of this experiment with a measurement on a hydrogen target allows a model-independent partial-wave analysis in terms of the “nucleon transversity” amplitudes. Unique or at most twofold ambiguous solutions are obtained. In particular we find a high lower limit ( ⪆30% ) of the spin non-flip unnatural exchange amplitudes at low | t |. These amplitudes, interpreted as being due to the exchange of an object with the quantum numbers of the A 1 , have been assumed to be absent in previous analyses. In checking the consequences of this finding on the old results, we test the validity of the rank-two assumotions for the density matrix. We find a small but significant deviation, which shows the need for a new phase-shift analysis including the A 1 exchange contribution.
MASS DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS SCALED TO 100 PCT POLARIZED PROTONS.
T DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS IN THE RHO REGION SCALED TO 100 PCT POLARIZED PROTONS.