The production cross section of 30.92 GeV/$c$ protons on carbon is measured by the NA61/SHINE spectrometer at the CERN SPS by means of beam attenuation in a copy (replica) of the 90-cm-long target of the T2K neutrino oscillation experiment. The employed method for direct production cross-section estimation minimizes model corrections for elastic and quasi-elastic interactions. The obtained production cross section is $\sigma_\mathrm{prod}~=~227.6~\pm~0.8\mathrm{(stat)}~_{-~3.2}^{+~1.9}\mathrm{(sys)}~{-~0.8}\mathrm{(mod)}$ mb. It is in agreement with previous NA61/SHINE results obtained with a thin carbon target, while providing improved precision with a total fractional uncertainty of less than 2$\%$. This direct measurement is performed to reduce the uncertainty on the T2K neutrino flux prediction associated with the re-weighting of the interaction rate of neutrino-yielding hadrons.
Production cross section in p+C interactions at different incident beam momenta.
Production cross section in p+C interactions at different beam momenta. The total uncertainty is the statistical, systematic and model uncertainties added in quadrature.
The ATLAS experiment at the Large Hadron Collider reports a search for charged-lepton-flavour violation in decays of $Z$ bosons into a τ lepton and an electron or muon of opposite charge.
The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The best-fit expected and observed distributions of the combined NN output in the VRSS for the $e\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.
The NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in the 20$\%$ most $central$$^7$Be+$^9$Be collisions at beam momenta of 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$ GeV/$c$. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are close to those found in inelastic $p$+$p$ reactions. The new results are compared to the world data on $p$+$p$ and Pb+Pb collisions as well as to predictions of the EPOS, UrQMD, AMPT, PHSD and SMASH models.
Transverse momentum spectra in rapidity slices of K+ produced in the 20% most central Be+Be collisions at beam momentum 19A GeV/c (collision energy 6.27 GeV). Rapidity values given in the legends correspond to the middle of the corresponding interval. Results presented in this table were obtained using dE/dx analysis method.
Transverse momentum spectra in rapidity slices of K+ produced in the 20% most central Be+Be collisions at beam momentum 30A GeV/c (collision energy 7.62 GeV). Rapidity values given in the legends correspond to the middle of the corresponding interval. Results presented in this table were obtained using dE/dx analysis method.
Transverse momentum spectra in rapidity slices of K+ produced in the 20% most central Be+Be collisions at beam momentum 30A GeV/c (collision energy 7.62 GeV). Rapidity values given in the legends correspond to the middle of the corresponding interval. Results presented in this table were obtained using tof-dE/dx analysis method.
The multiplicity dependence of the pseudorapidity density of charged particles in proton-proton (pp) collisions at centre-of-mass energies $\sqrt{s}$ = 5.02, 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ($|\eta| < 1.5$). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $|\eta|<1$ ($\mathrm{INEL}_{>0}$). The multiplicity dependence of the pseudorapidy density of charged particles is measured with mid and forward rapidity multiplicity estimators, the latter being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. Both generators provide a good description of the data.
Charged-particle pseudorapidity density for forward multiplicity classes as a function of $\eta$ in pp collisions at $\sqrt{s} = 5.02\,\mathrm{TeV}$. Statistical errors are generally insignificant.
Charged-particle pseudorapidity density for forward multiplicity classes as a function of $\eta$ in pp collisions at $\sqrt{s} = 7\,\mathrm{TeV}$. Statistical errors are generally insignificant.
Charged-particle pseudorapidity density for forward multiplicity classes as a function of $\eta$ in pp collisions at $\sqrt{s} = 13\,\mathrm{TeV}$. Statistical errors are generally insignificant.
We report a measurement of the $\pi^-$ photoproduction beam asymmetry for the reaction $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ using data from the GlueX experiment in the photon beam energy range 8.2--8.8 GeV. The asymmetry $\Sigma$ is measured as a function of four-momentum transfer $t$ to the $\Delta^{++}$ and compared to phenomenological models. We find that $\Sigma$ varies as a function of $t$: negative at smaller values and positive at higher values of $|t|$. The reaction can be described theoretically by $t$-channel particle exchange requiring pseudoscalar, vector, and tensor intermediaries. In particular, this reaction requires charge exchange, allowing us to probe pion exchange and the significance of higher-order corrections to one-pion exchange at low momentum transfer. Constraining production mechanisms of conventional mesons may aid in the search for and study of unconventional mesons. This is the first measurement of the process at this energy.
Beam asymmetry $\Sigma$ vs. $|t|$ compared to theoretical predictions. The uncertainty on $|t|$ is the rms of values in the $\Delta^{++}$ signal region. The uncertainties on $\Sigma$ are statistical and systematic (uncorrelated across t bins), respectively. There is an additional fully correlated systematic uncertainty of 1.5% on the magnitude of $\Sigma$.
The NA61/SHINE collaboration studies at the CERN Super Proton Synchrotron (SPS) the onset of deconfinement in hadronic matter by the measurement of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra and mean multiplicities of $\pi^{-}$ mesons produced in the 5\% most \textit{central} $^7$Be+$^9$Be collisions at beam momenta of 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$ GeV/$c$ obtained by the so-called $h^-$ method which does not require any particle identification. The shape of the transverse mass spectra differs from the shapes measured in central Pb+Pb collisions and inelastic p+p interactions. The normalized width of the rapidity distribution decreases with increasing collision energy and is in between the results for inelastic nucleon-nucleon and central Pb+Pb collisions. The mean multiplicity of pions per wounded nucleon in \textit{central} $^7$Be+$^9$Be collisions is close to that in central Pb+Pb collisions up to 75$A$GeV/$c$. However, at the top SPS energy the result is close to the one for inelastic nucleon-nucleon interactions. The results are discussed in the context of predictions for the onset of deconfinement at the CERN SPS collision energies.
Transverse momentum spectra of PI− in rapidity slices produced in the 5% most central Be+Be collisions at 19A GeV/c.
Transverse momentum spectra of PI− in rapidity slices produced in the 5% most central Be+Be collisions at 30A GeV/c.
Transverse momentum spectra of PI− in rapidity slices produced in the 5% most central Be+Be collisions at 40A GeV/c.
The Standard Model of particle physics encapsulates our current best understanding of physics at the smallest scales. A fundamental axiom of this theory is the universality of the couplings of the different generations of leptons to the electroweak gauge bosons. The measurement of the ratio of the rate of decay of $W$ bosons to $\tau$-leptons and muons, $R(\tau/\mu) = B(W \to \tau \nu_\tau)/B(W \to \mu \nu_\mu)$, constitutes an important test of this axiom. A measurement of this quantity with a novel technique using di-leptonic $t\bar{t}$ events is presented based on 139 fb${}^{-1}$ of data recorded with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV. Muons originating from $W$ bosons and those originating from an intermediate $\tau$-lepton are distinguished using the lifetime of the $\tau$-lepton, through the muon transverse impact parameter, and differences in the muon transverse momentum spectra. The value of $R(\tau/\mu)$ is found to be $0.992 \pm 0.013 [\pm 0.007 (stat) \pm 0.011 (syst)]$ and is in agreement with the hypothesis of universal lepton couplings as postulated in the Standard Model. This is the most precise measurement of this ratio, and the only such measurement from the Large Hadron Collider, to date.
The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $5<p_{\textrm{T}}^{\mu}<10$ GeV selection in the $e-\mu$ channel.
The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $5<p_{\textrm{T}}^{\mu}<10$ GeV selection in the $\mu-\mu$ channel.
The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $10<p_{\textrm{T}}^{\mu}<20$ GeV selection in the $e-\mu$ channel.
The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.
Centrality selection for STAR FXT sqrt(sNN) = 4.5 GeV Au+Au collisions
Rapidity dependence of directed flow, v1(y), for protons with transverse momentum 0.4 < pT < 2.0 GeV/c from events with 10-25% centrality.
Rapidity dependence of directed flow, v1(y), for negative pions with transverse momentum pT > 0.2 GeV/c and total momentum magnitude |p| < 1.6 GeV/c from events within 10-30% centrality. Here, the BBC-based Event Plane method is used. Plotted error bars are statistical only, and systematic errors are of comparable size.
We present a measurement of the first-order azimuthal anisotropy, $v_1(y)$, of deuterons from Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV recorded with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The energy dependence of the $v_1(y)$ slope, $dv_{1}/dy|_{y=0}$, for deuterons, where $y$ is the rapidity, is extracted for semi-central collisions (10-40\% centrality) and compared to that of protons. While the $v_1(y)$ slopes of protons are generally negative for $\sqrt{s_{NN}} >$ 10 GeV, those for deuterons are consistent with zero, a strong enhancement of the $v_1(y)$ slope of deuterons is seen at the lowest collision energy (the largest baryon density) at $\sqrt{s_{NN}} =$ 7.7 GeV. In addition, we report the transverse momentum dependence of $v_1$ for protons and deuterons. The experimental results are compared with transport and coalescence models.
The 1st-order event plane ($\Psi_{1}$) resolution as a function of centrality of Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The $\Psi_{1}$ is reconstructed with the BBC detectors and its resolution is estimated by the correlation of sub-$\Psi_{1}$ from east BBC and west BBC. Data presented later (10-40\% centrality) is indicated by the dashed-line box.
Rapidity dependene of $v_1$ for protons(open squares) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only
Rapidity dependene of $v_1$ for deuterons(solid circles) in 10-40 \%Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The lines, dashed-dot line for proton and dashed line for deuteron, at the midrapidity ($|y| < 0.6$) are the fit with linear functions to extract the slopes. The plotted uncertainties are the statistical only
The MiniBooNE experiment at Fermilab reports a total excess of $638.0 \pm 132.8$ electron-like events ($4.8 \sigma$) from a data sample corresponding to $18.75 \times 10^{20}$ protons-on-target in neutrino mode, which is a 46\% increase in the data sample with respect to previously published results, and $11.27 \times 10^{20}$ protons-on-target in antineutrino mode. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots in visible energy and cosine of the angle of the outgoing lepton, which can provide valuable input to models for the event excess. Second, we test whether the excess may arise from photons that enter the detector from external events or photons exiting the detector from $\pi^0$ decays in two model independent ways. Beam timing information shows that almost all of the excess is in time with neutrinos that interact in the detector. The radius distribution shows that the excess is distributed throughout the volume, while tighter cuts on the fiducal volume increase the significance of the excess. We conclude that models of the event excess based on entering and exiting photons are disfavored.
The frequentist $1\sigma$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.
The frequentist $90\%$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.
The frequentist $99\%$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.