The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.
Statistical errors only.
No description provided.
No description provided.
Multi-strange baryon and antibaryon production is expected to be a useful probe in the search for quark-gluon plasma formation. We present the transverse mass distributions of negative particles, Λ' s , Λ ' s and Ξ − ' s produced in sulphur-tungsten interactions at 200 GeV/ c per nucleon and give the corrected rations Λ /Λ, Ξ − /Λ and Ξ − / Λ . Our ratio Ξ − / Λ appears to be larger than that from pp interactions.
Inverse slopes for different particle production.
Data from this and other WA85 publications.
Data from this and other WA85 publications.
From 2540 Z 0 → τ + τ − events, we determine the inclusive decay branching fractions of the τ -lepton into one and three charged particles to be 0.856 ± 0.006 (stat.) ± 0.003 (syst.) and 0.144 ± 0.006 (stat.) ± 0.003 (syst.), respectively. The leptonic branching fractions are measured to be 0.175 ± 0.008 (stat.) ± 0.005 (syst.) for τ → μν μ ντ and 0.177 ± 0.007 (stat.) ± 0.006 (syst.) for τ → eν e ν τ . We determined the τ lifetime both from three-prong decays using the decay length and from one-prong decays using the impact parameter. The results from the two independent methods agree and yield a combined value of [0.309 ± 0.023 (stat.) ± 0.030 (syst.)] × 10 −12 s.
ALPHAS extracted from the ratio of the branching fractions.
The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.
Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.
No description provided.
We present a study of 43 000 3-jet events from Z 0 boson decays. Both the measured jet energy distributions and the event orientation are reproduced by second order QCD. An alternative model with scalar gluons fails to describe the data.
Jets are ordered according their energy: E1 > E2 > E3.
The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in x F is observed in which A N increases from 0 to 0.42 with increasing x F for the π + data and decreases from 0 to −0.38 with increasing x F for π − data. The kinematic range covered is 0.2⩽ x F ⩽0.9 and 0.2⩽ p T ⩽2.0 GeV / c . In a simple model our data indicate that at large x F the transverse spin of the proton is correlated with that of its quark constituents.
Integrated over all PT.
Integrated over all PT.
No description provided.
From a sample of 150 000 hadronic Z decays collected with the ALEPH detector at LEP, events containing prompt leptons are used to measure the forward-backward asymmetries for the channels Z → b b and Z → c c , giving the results A FB b =0.126±0.028±0.012 and A FB c =0.064±0.039±0.030. These asymmetries correspond to the value of effective electroweak mixing angle at the Z mass sin 2 θ W ( m Z 2 ) = 0.2262±0.0053.
b asymmetry from high pt leptons.
b asymmetry from full pt range.
b asymmetry from full pt range.
From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.
A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.
No description provided.
No description provided.
We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.
No description provided.
Error is dominated by systematic uncertainties.
No description provided.