The production of prompt $D^{0}$, $D^{+}_{\rm s}$, and $\Lambda_{\rm c}^{+}$ hadrons, and their ratios, $D^{+}_{\rm s}$/$D^{0}$ and $\Lambda_{\rm c}^{+}$/$D^{0}$, are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y| <0.5$) with the ALICE detector at the LHC. The measurements are performed as a function of the charm-hadron transverse momentum ($p_{\rm T}$) in intervals of charged-particle multiplicity, measured with two multiplicity estimators covering different pseudorapidity regions. While the strange to non-strange $D^{+}_{\rm s}$/$D^{0}$ ratio indicates no significant multiplicity dependence, the baryon-to-meson $p_{\rm T}$-differential $\Lambda_{\rm c}^{+}$/$D^{0}$ ratio shows a multiplicity-dependent enhancement, with a significance of 5.3$\sigma$ for $1< p_{\rm T} < 12$ GeV/$c$, comparing the highest multiplicity interval with respect to the lowest one. The measurements are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach, and with predictions from event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process. The $\Lambda_{\rm c}^{+}$/$D^{0}$ ratios as a function of $p_{\rm T}$ present a similar shape and magnitude as the $\Lambda/K^{0}_{s}$ ratios in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-hadron formation, with analogous multiplicity dependence. The $p_{\rm T}$-integrated ratios, extrapolated down to $p_{\rm T}$=0, do not show a significant dependence on multiplicity within the uncertainties.
In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, $\rm{d}N_{\rm{ch}}/\rm{d}\eta$, and total charged-particle multiplicity, $N_{\rm{ch}}^{\rm{tot}}$, in Xe-Xe collisions at a centre-of-mass energy per nucleon--nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of $-3.5 < \eta < 5$. The values of $\rm{d}N_{\rm{ch}}/\rm{d}\eta$ at mid-rapidity and $N_{\rm{ch}}^{\rm{tot}}$ for central collisions, normalised to the number of nucleons participating in the collision ($N_{\rm{part}}$) as a function of $\sqrt{s_{\rm NN}}$, follow the trends established in previous heavy-ion measurements. The same quantities are also found to increase as a function of $N_{\rm{part}}$, and up to the 10% most central collisions the trends are the same as the ones observed in Pb-Pb at a similar energy. For more central collisions, the Xe-Xe scaled multiplicities exceed those in Pb-Pb for a similar $N_{\rm{part}}$. The results are compared to phenomenological models and theoretical calculations based on different mechanisms for particle production in nuclear collisions. All considered models describe the data reasonably well within 20%.
The polarization of inclusive J/$\psi$ and $\Upsilon(1{\rm S})$ produced in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=5.02$ TeV at the LHC is measured with the ALICE detector. The study is carried out by reconstructing the quarkonium through its decay to muon pairs in the rapidity region $2.5<y<4$ and measuring the polar and azimuthal angular distributions of the muons. The polarization parameters $\lambda_{\theta}$, $\lambda_{\phi}$ and $\lambda_{\theta\phi}$ are measured in the helicity and Collins-Soper reference frames, in the transverse momentum interval $2<p_{\rm T}<10$ GeV/$c$ and $p_{\rm T}<15$ GeV/$c$ for the J/$\psi$ and $\Upsilon(1{\rm S})$, respectively. The polarization parameters for the J/$\psi$ are found to be compatible with zero, within a maximum of about two standard deviations at low $p_{\rm T}$, for both reference frames and over the whole $p_{\rm T}$ range. The values are compared with the corresponding results obtained for pp collisions at $\sqrt{s}=7$ and 8 TeV in a similar kinematic region by the ALICE and LHCb experiments. Although with much larger uncertainties, the polarization parameters for $\Upsilon(1{\rm S})$ production in Pb-Pb collisions are also consistent with zero.
An excess of J/$\psi$ yield at very low transverse momentum ($p_{\rm T} < 0.3$ GeV/$c$), originating from coherent photoproduction, is observed in peripheral and semicentral hadronic Pb$-$Pb collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}} = 5.02$ TeV. The measurement is performed with the ALICE detector via the dimuon decay channel at forward rapidity ($2.5<y<4$). The nuclear modification factor at very low $p_{\rm T}$ and the coherent photoproduction cross section are measured as a function of centrality down to the 10% most central collisions. These results extend the previous study at $\sqrt{s_{\rm NN}} = 2.76$ TeV, confirming the clear excess over hadronic production in the $p_{\rm T}$ range 0$-$0.3 GeV/$c$ and the centrality range 70$-$90%, and establishing an excess with a significance greater than 5$\sigma$ also in the 50$-$70% and 30$-$50% centrality ranges. The results are compared with earlier measurements at $\sqrt{s_{\rm NN}} = 2.76$ TeV and with different theoretical predictions aiming at describing how coherent photoproduction occurs in hadronic interactions with nuclear overlap.
Two-particle correlations in high-energy collision experiments enable the extraction of particle source radii by using the Bose-Einstein enhancement of pion production at low relative momentum $q\propto 1/R$. It was previously observed that in $\rm{p}\rm{p}$ collisions at $\sqrt{s}=7$ TeV the average pair transverse momentum $k_{\rm T}$ range of such analyses is limited due to large background correlations which were attributed to mini-jet phenomena. To investigate this further, an event-shape dependent analysis of Bose-Einstein correlations for pion pairs is performed in this work. By categorizing the events by their transverse sphericity $S_{\rm T}$ into spherical $(S_\textrm{T}>0.7)$ and jet-like $(S_\textrm{T}<0.3)$ events a method was developed that allows for the determination of source radii for much larger values of $k_{\rm T}$ for the first time. Spherical events demonstrate little or no background correlations while jet-like events are dominated by them. This observation agrees with the hypothesis of a mini-jet origin of the non-femtoscopic background correlations and gives new insight into the physics interpretation of the $k_{\rm T}$ dependence of the radii. The emission source size in spherical events shows a substantially diminished $k_{\rm T}$ dependence, while jet-like events show indications of a negative trend with respect to $k_{\rm T}$ in the highest multiplicity events. Regarding the emission source shape, the correlation functions for both event sphericity classes show good agreement with an exponential shape, rather than a Gaussian one.
The first measurement of the $\Upsilon(1{\rm S})$ elliptic flow coefficient ($v_2$) is performed at forward rapidity (2.5 $<$ $y$ $<$ 4) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The results are obtained with the scalar product method and are reported as a function of transverse momentum ($p_{\rm{T}}$) up to 15 GeV/$c$ in the 5-60% centrality interval. The measured $\Upsilon(1{\rm S})$ $v_2$ is consistent with zero and with the small positive values predicted by transport models within uncertainties. The $v_2$ coefficient in 2 $<$ $p_{\rm T}$ $<$ 15 GeV/$c$ is lower than that of inclusive J/$\psi$ mesons in the same $p_{\rm{T}}$ interval by 2.6 standard deviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the $\Upsilon$(1S) production in Pb-Pb collisions at LHC energies is dominated by dissociation limited to the early stage of the collision whereas in the J/$\psi$ case there is substantial experimental evidence of an additional regeneration component.
We present the first measurement of event-by-event fluctuations in the kaon sector in Pb-Pb collisions at $\sqrt {s_{\rm NN}}=$ 2.76 TeV with the ALICE detector at the LHC. The robust fluctuation correlator $\nu_{\rm dyn}$ is used to evaluate the magnitude of fluctuations of the relative yields of neutral and charged kaons, as well as the relative yields of charged kaons, as a function of collision centrality and selected kinematic ranges. While the correlator $\nu_{\rm dyn}[\rm K^+,\rm K^-]$ exhibits a scaling approximately in inverse proportion of the charged particle multiplicity, $\nu_{\rm dyn}[\rm K_S^0,\rm K^{\pm}]$ features a significant deviation from such scaling. Within uncertainties, the value of $\nu_{\rm dyn}[\rm K_S^0,\rm K^{\pm}]$ is independent of the selected transverse momentum interval, while it exhibits a pseudorapidity dependence. The results are compared with HIJING, AMPT and EPOS-LHC predictions, and are further discussed in the context of the possible production of disoriented chiral condensates in central Pb-Pb collisions.
Fluctuation measurements are important sources of information on the mechanism of particle production at LHC energies. This article reports the first experimental results on third-order cumulants of the net-proton distributions in Pb$-$Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector. The results on the second-order cumulants of net-proton distributions at $\sqrt{s_{\rm NN}} = 2.76$ and $5.02$ TeV are also discussed in view of effects due to the global and local baryon number conservation. The results demonstrate the presence of long-range rapidity correlations between protons and antiprotons. Such correlations originate from the early phase of the collision. The experimental results are compared with HIJING and EPOS model calculations, and the dependence of the fluctuation measurements on the phase-space coverage is examined in the context of lattice quantum chromodynamics (LQCD) and hadron resonance gas (HRG) model estimations. The measured third-order cumulants are consistent with zero within experimental uncertainties of about 4% and are described well by LQCD and HRG predictions.
We report on the measurement of the inclusive J/$\psi$ polarization parameters in pp collisions at a center of mass energy $\sqrt{s} = 8$ TeV with the ALICE detector at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 1.23 pb$^{-1}$. J/$\psi$ resonances are reconstructed in their di-muon decay channel in the rapidity interval $2.5 < y < 4.0$ and over the transverse-momentum interval $2 < p_{\rm T} < 15$ GeV/$c$. The three polarization parameters ($\lambda_\theta$, $\lambda_\varphi$, $\lambda_{\theta\varphi}$) are measured as a function of $p_{\rm T}$ both in the helicity and Collins-Soper reference frames. The measured J/$\psi$ polarization parameters are found to be compatible with zero within uncertainties, contrary to expectations from all available predictions. The results are compared with the measurement in pp collisions at $\sqrt{s} = 7$ TeV.
We present the first systematic comparison of the charged-particle pseudorapidity densities for three widely different collision systems, pp, p-Pb, and Pb-Pb, at the top energy of the Large Hadron Collider ($\sqrt{s_{\rm NN}} = 5.02$ TeV) measured over a wide pseudorapidity range (${-3.5 <\eta <5}$), the widest possible among the four experiments at that facility. The systematic uncertainties are minimised since the measurements are recorded by the same experimental apparatus (ALICE). The distributions for p-Pb and Pb-Pb collisions are determined as a function of the centrality of the collisions, while results from pp collisions are reported for inelastic events with at least one charged particle at midrapidity. The charged-particle pseudorapidity densities are, under simple and robust assumptions, transformed to charged-particle rapidity densities. This allows for the calculation and the presentation of the evolution of the width of the rapidity distributions and of a lower bound on the Bjorken energy density, as a function of the number of participants in all three collision systems. We find a decreasing width of the particle production, and roughly a smooth ten fold increase in the energy density, as the system size grows, which is consistent with a gradually higher dense phase of matter.