An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.
No description provided.
Combined LAMBDA and LAMBDABAR multiplicity.
Errors contain systematic uncertainties.
A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
This paper presents results on charm photoproduction in the energy interval 40 to 160 GeV, obtained from the high-statistics charm samples of the NA 14/2 experiment at CERN. We measure the charm cross-section, the distributions inxF andp2T and various production ratios and charge asymmetries. The total non-diffractive open-charm cross-section per nucleon is measured to be\(\sigma _{(\gamma N \to c\bar cX)} \) at 〈Eγ〉 =100 GeV. We discuss the photoproduction of charm in terms of theoretical and phenomenological models. We compare the measuredp2T andxF distributions with first-order QCD calculations of photon-gluon fusion and obtain a value for the charm-quark mass ofmc=1.5+0.2−0.1GeV/c2.
D0 cross section assuming branching ratio of D0 --> K- PI+ of 3.65 +- 0.21 PCT.
D+(-) cross section assuming branching ratio of D+ --> K- PI+ PI+ of 8.0 +0.8,-0.7 PCT.
Total non diffractive open charm production cross section allowing for contributions for other charmed particles (D/S and LAMBDA/C). Comparison of data with first order QCD leads to a predicted charm quark mass of 1.5 +0.2,-0.1 GeV.
An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.
No description provided.
No description provided.
No description provided.
In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29±8 Λ c ( Λ c ) charmed-baryon and antibaryon decays in the pK − π + ( p K + π − ) final state. Quasi two-body final states do not contribite significantly to this channel. The mass of the Λ c was measured to be 2281.7±2.7±2.6 MeV/ c 2 and its lifetime 0.18±0.03±0.03 ps. The ratio of Λ c D production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a Λ c branching fraction in pK π as high as 5%.
Result extrapolated to all lambda/c energies has large model dependent uncertainties.