Differential cross sections for γp→ηp have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass ∼1.8 GeV couples to the ηN channel.
Cross sections for photon energies 0.775 to 0.925 GeV.
Cross sections for photon energies 0.975 to 1.125 GeV.
Cross sections for photon energies 1.175 to 1.325 GeV.
We present measurements of the differential and total cross sections and the Λ polarization for the reaction K−p→ηΛ from threshold to pK−=770MeV/c, with much better precision than previous measurements. Our cross-section data show a remarkable similarity to the SU(3) flavor-related π−p→ηn cross-section results. The reaction K−p→ηΛ at threshold is dominated by formation of the intermediate Λ(1670)12− state.
Total cross section measurement for K- P --> ETA LAMBDA. Errors shown are statistical only.
Differential cross sections DSIG/DOMEGA for K- P --> ETA LAMBDA. Errors shown are statistical only.
Differential cross sections DSIG/DOMEGA for K- P --> ETA LAMBDA. Errors shown are statistical only.
The exclusive production cross sections for $\omega$ and $\phi$ mesons have been measured in proton-proton reactions at $p_{lab}=3.67$ GeV/c. The observed $\phi/\omega$ cross section ratio is $(3.8\pm0.2^{+1.2}_{-0.9})\times 10^{-3}$. After phase space corrections, this ratio is enhanced by about an order of magnitude relative to naive predictions based upon the Okubo-Zweig-Iizuka (OZI) rule, in comparison to an enhancement by a factor $\sim 3$ previously observed at higher beam momenta. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the $\phi/\omega$ ratio observed in specific channels of $\bar pp$ annihilation experiments. Furthermore, differential cross section results are also presented which indicate that although the $\phi$ meson is predominantly produced from a $^3P_1$ proton-proton entrance channel, other partial waves contribute significantly to the production mechanism at this beam momentum.
No description provided.
Differential cross section of OMEGA production.
Differential cross section of PHI production.
The ratio of the total exclusive production cross sections for $\eta\prime$ and $\eta$ mesons has been measured in the $pp$ reaction at $p_{beam}=3.67$ GeV/c. The observed $\eta\prime/\eta$ ratio is $(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2}$ from which the exclusive $\eta\prime$ meson production cross section is determined to be $(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b$. Differential cross section distributions have been measured. Their shape is consistent with isotropic $\eta\prime$ meson production.
No description provided.
No description provided.
Only statistial errors.
A test of the QED process e+e- -> gamma gamma (gamma) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest energies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb^{-1}. The differential and total cross-sections for the process e+e- -> gamma gamma were measured, and found to be in agreement with the QED prediction. 95% Confidence Level (C.L.) lower limits on the QED cut-off parameters of Lambda+ > 330 GeV and Lambda- > 320 GeV were derived. A 95% C.L. lower bound on the mass of an excited electron of 311 GeV/c^2 (for lambda_gamma = 1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95% C.L. lower limits on the string mass scale, M_S: M_S > 713 GeV/c^2 (lambda = 1) and M_S > 691 GeV/c^2 (lambda = -1).
No description provided.
No description provided.
No description provided.
The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.
Measured cross section.
Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).
The reaction γp → K 0 Σ + has been measured with the SAPHIR detector at the electron stretcher ring ELSA. The total cross section rises up to a peak value of 1.1 μ b at a photon energy of 1.4 GeV. The differential cross sections dσ/dΩ are consistent with being flat throughout the measured energy range. The first measurement of the Σ + polarization in photon induced reactions was obtained.
Total cross section for the reaction GAMMA P --> K0 SIGMA+. Errors include statistics and the uncertainty on the acceptance calculation and photon flux.
Differential cross section for the reaction GAMMA P --> K0 SIGMA+. Errors are dominated by statistical uncertainties.
Measure of SIGMA+ polarization in the reaction GAMMA P --> K0 SIGMA+.
Differential cross sections for Compton scattering from the free proton at Θ γ ′ lab =130.7° in the energy region from 200 MeV to 410 MeV and for quasi-free Compton scattering from the proton bound in the deuteron at Θ γ ′ lab =148.8° in the energy region from 200 MeV to 290 MeV have been measured. The free proton data are in agreement with dispersion-theory predictions based on standard parameters. The difference of the proton polarizabilities has been extracted from the quasi-free data. Our result, α ̄ − β ̄ =[9.1±1.7( stat+syst )±1.2( mod )]×10 −4 fm 3 , is in reasonable agreement with the world average of the free proton data if the backward spin polarizability γ π is taken to be −37.6×10 −4 fm 4 as predicted by dispersion theory in agreement with many theoretical calculations. This implies that quasi-free Compton scattering may also be used to determine the electromagnetic polarizabilities of the neutron. No indication has been found of a recently suggested new contribution to γ π .
No description provided.
The total and the differential cross-sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP at centre-of-mass energies from 130 to 183 GeV for an integrated luminosity of 78.19 pb −1 . The results agree with the QED predictions. The lower limits (obtained including previously published results at the Z 0 energies) on the QED cutoff parameters are Λ + >253 GeV and Λ − >225 GeV and the lower bound on the mass of an excited electron with an effective coupling constant λ γ =1 is 231 GeV/ c 2 . All the limits are at the 95% confidence level.
The cross section of the previously published data (sqrt(s)=91.25 GeV, see PL 327B, 386) is given at the mean of the CM energies weighted by the luminosityat each point.
Statistical errors only. Additional overall systematic uncertainty is givenabove.
Statistical errors only. Additional overall systematic uncertainty is givenabove.
Enhanced production of ΛΛ pairs, above levels predicted by a two-step process model, has been observed near threshold (in the mass range 2.23-2.26 GeV/ c 2 ) in the 12 C( K − , K + ) reaction at 1.66 GeV/ c using a scintillating fiber target. The differential cross section for ΛΛ production in the momentum region 0.95≤ p K + ≤1.3 GeV/ c averaged over the range 2.3 o ≤ θ K + ≤14.7 o was found to be 7.6±1.3 ±0.9 μ b/sr, and that for the enhancement was found to be approximately 3 μ b/sr.
No description provided.