We have measured differential cross sections for the elastic scattering of charged pions from H3 and He3 into the backward hemisphere. Near the peak of the delta resonance, at Tπ=180 MeV, an angular distribution covering 114° to 168° in the laboratory extends our earlier measurements. At Tπ=142, 180, 220, and 256 MeV, we have measured an excitation function at angles approaching 170°. The cross sections for the reactions He3(π+,π+)3He, H3(π−,π−)3H show a rise at back angles which is not seen for He3(π−,π−)3He and H3(π+,π+)3H. There is a dip in the cross sections near 130° for Tπ=180 MeV.
No description provided.
No description provided.
No description provided.
We report a study of single photon production in e + e − collisions at s =58 GeV with the TOPAZ detector at TRISTAN. From data corresponding to an integrated luminosity of 213 pb −1 , 5 single photon candidates remained after event selection, which can be compared with the expected 3.1 ν ν γ and 2.8 background events. These results exclude the selectron mass below 47.2 GeV at the 90% confidence level, if e ̃ L and e ̃ R are mass-degenerate and the photino is massless. When combined with results from other experiments, this limit improves to 75.0 GeV.
No description provided.
The polarization transfer κ 0 and the tensor analyzing power T 20 for the 1 H d p)d reaction have been measured up to an internal momentum of k = 0.58 GeV/c. Comparison of the same observables obtained in recent studies for 1 H d p)d reaction, as a function of k , show different behavior. However the data from these two reactions are almost identical when compared in T 20 versus κ 0 correlation plots. We discuss similarities and differences observed in the two reactions.
The authors use the Infinite Momentum Frame variable K= M( proton) * sqrt(1/(4*a*(1-a)) - 1), where a = (E(proton)+P_long(proton))/(E(deut)+P(deut)).
The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.
No description provided.
None
No description provided.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
We report the first observations of Pontecorvo reactions of the type ¯pd →Xn. We fully reconstruct the outgoing meson and, for antiprotons stopped in liquid deuterium, we measure: BR(¯pd→π0)=(7.03±0.72)×10−6, BR(¯pd→ηn)=(3.19+0.48)×10−6, BR(¯pd→ωn)=(22.8+4.1)×10−6, BR(¯pd→η′n)14×10−6 (at 95% confidence level). Assuming charge independence, our result for¯ pd→π0n is compatible with measurements of the only other observed Pontecorvo reaction ¯pd → π−p. The experimental ratios between the above branching ratios are in fair agreement with both the statistical model and dynamical two-step models (assumingN¯ N annihilation into two mesons, with subsequent absorption of one meson on the remaining nucleon). This agreement suggests that there may be appreciable rates for Pontecorvo reactions producing final state mesons with masses above 1 GeV.
No description provided.
The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.
JINR.
BNL-815.
CERN-EMU-001.
A sample of events enriched in bb̄ quark pairs was selected in the data recorded by the DELPHI experiment at LEP during 1992 and 1993, by the presence of secondary decay vertices from short-lived particles. Using this sample, the average multiplicities of K s 0 , K ± , p(p̄), Λ( Λ ) and of charged particles in bb̄ events have been measured, distinguishing the component from fragmentation and the component coming from the decay of b-hadrons. The measurement of the average charge multiplicity in bb̄ events was used to compute the mean fractional beam energy carried by the primary b-hadron, and the difference in charged particle multiplicity between bb̄ events and light quark (uū, dd̄, ss̄) events.
Event multiplicity in bottom events.
Differential cross section for charged particles in BOTTOM tagged hemispheres.
Differential cross section for charged particles in untagged hemispheres.
We have carried out inclusive measurements of $\Lambda(\overline{\Lambda})$ production in two-photon processes at TRISTAN. The mean $\sqrt{s}$ was 58 GeV and the integrated luminosity was 265 pb$~{-1}$. Inclusive $\Lambda (\overline{\Lambda})$ samples were obtained under such conditions as no-electron, anti-electron, and remnant-jet tags. The data were compared with theoretical calculations. The measured cross sections are two-times larger than the leading-order theoretical predictions, suggesting the necessity of next-to-leading-order Monte-Carlo generator.
No-tag data.
Anti-electron tag data.
Remnant-jet tag with VDM subtraction data.