A method for the determination of neutron spectra in a bubble chamber experiment is developed. Double differential cross sections for inclusive neutron and lambda production are presented. The n/Λ particle ratios are determined as functions of x and p T ; at p T = 0 GeV/ c they are compatible with the ratios measured in pCu interactions at 24 GeV/ c . Our neutron spectra are compared with spectra for protons produced near the direction of the incident neutron in pn interactions at FNAL and with neutron spectra measured in pp interactions at the ISR. Exchange mechanisms are studied in the framework of single diffraction dissociation and the triple-Regge model. The scattering of virtual pions and kaons on real protons is investigated.
No description provided.
No description provided.
No description provided.
In an experiment with the CERN 2m deuterium bubble chamber the reaction K + d→K o pp (1) and the related reaction K + n→K o p (2) are studied at an incident momentum of 4.6 GeV/ c . The cross section for the latter reaction is found to be slightly larger than the cross section for the reaction K − p → K o n at the same energy. The corresponding differential cross sections agree within the rather large uncertainties. The forward amplitude for reaction (2) is predominantly real. Moreover, the total and forward differential charge exchange cross section values are compatible with those predicted on the basis of an SU (3) sum rule. A comparison of the K ± -charge exchange differential cross sections with the predictions of a Regge pole model is also presented.
No description provided.
SMALL -T DEUTERIUM CORRECTION APPLIED USING MC GEE WAVE FUNCTION (PAPER ALSO GIVES UNCORRECTED AND HULTHEN CORRECTED DATA).
Quasi-inclusive and total inclusive ϱ + , ϱ − and ϱ 0 cross sections have been studied, using data of a π + p and a pp bubble chamber experiment at 16 and 24 GeV/ c , respectively. In pp collisions it is found that the total inclusive cross sections for ϱ 0 , ϱ + and ϱ − production are about equal. This equality also holds for the differential cross sections d σ/ d y ∗ , all showing the characteristics of dominantly central production. In the π + p reactions the ϱ − are mainly produced centrally, whereas there are strong additional contributions in the beam fragmentation region for ϱ + and ϱ 0 mesons. In the central region, however, the cross sections for ϱ + , ϱ − and ϱ 0 production are almost equal within errors. All our findings agree with what is expected from quark model predictions.
No description provided.
Differential cross sections for αα and αp scattering have been measured at √ s =125 and 88 GeV, respectively, in the t range from −0.2 to −0.8 (GeV/ c ) 2 using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. Comparison with theoretical calculations using the Glauber model confirms the importance of including inelastic shadowing effects in very high energy nucleus-nucleus elastic scattering.
No description provided.
PLAB IS CALCULATED ASSUMING STATIONARY HELIUM TARGET.
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
In a K − p experiment at 32 GeV/ c with a sensitivity of 6 ev/≈b the inclusive reaction K − p → p + X was studied in the kinematical region x < −0.3. Most of the protons in this region were identified by ionization. Correcting for losses of the very slow as well as of the fast protons in this region we obtained σ p ( x < −0.3) = 5.9 ± 0.2 mb. The double invariant differential cross sections of protons were analysed in terms of the variables x , p T 2 , and M 2 / s , t , and the contributions from separate peripheral mechanisms were analysed. A triple-Regge analysis was performed on the inclusive proton d 2 σ /d t d( M 2 / s ) distribution with | t | < 1.1 GeV 2 . The fit with an RRP term resulted in an effective trajectory for the exchanged reggeon lying somewhat lower than that for the leading meson trajectory. Inclusion in the fit of an additional ππp term showed that pion exchange is important in the triple-Regge region at small | t |.
No description provided.
No description provided.
The production of ρ 0 (770) and f(1270) is studied in π − p interactions at 16 GeV/ c . By comparison with inclusive K ∗0 production in the reaction K − p → K ∗0 + anything, and with inclusive ρ 0 production in the reaction pp → ρ 0 + anything, it is found that the data can be interpreted in terms of two production processes: the central production of resonances and the fragmentation of the beam particle. For the π − p reaction, the inclusive ρ 0 beam fragmentation cross section is 3.1 ± 0.3 mb while that for central production is 1.6 ± 0.5 mb. The ρ 0 central production cross section is consistent with increasing with energy as ln s behaviour. The ratio of ρ 0 to π − inclusive cross sections (excluding the leading π − ) is ∼0.2, independent of energy. The ρ 0 to π − ratio increases as a function of p T to a constant value of ∼ 1 2 above 1 GeV/ c . The ρ (charged and neutral) and f decays account for (25 ± 4)% and (1.4 ± 0.3)%, respectively, of all pions produced.
No description provided.
No description provided.
No description provided.
By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.
No description provided.
FIT TO ISOSPIN HALF NUCLEON RESONANCE PRODUCTION WITH ISOSPIN ZERO EXCHANGE.
None
292+-7 MUB - CORRECTED VALUE FOR FIRST REACTION (SLOW PROTONS). M(P 4PI) <= 3.5 GEV FOR REACTIONS WITH FOUR PIONS.
No description provided.
No description provided.
Antilambda production is studied inK−p interactions at 32 GeV/c. Both total and differential cross sections are presented. The inclusive\(\bar \Lambda \) production cross section amounts to 109±7 μb. A remarkable energy dependence is observed, σ(\(\bar \Lambda \)) increasing by a factor of four between 14.3 and 32 GeV/c. Thep⊥2 distribution exhibits an exponential fall-off with a slope of 3.3±0.2 (GeV/c)−2. Most of the\(\bar \Lambda \)'s are emitted in the forward hemisphere. The invariantx distribution increases between 14.3 and 32 GeV/c. Data are presented for\(\bar \Lambda \) production inK-p→Λ\(\bar \Lambda \)+XK-p→\(\bar \Lambda \)Kn+X, andK-p→\(\bar \Lambda \)p+X.
No description provided.