The cross section of the process e+e−→π+π−π0 has been measured in the c.m. energy range 984–1060 MeV with the CMD-2 detector at the VEPP-2M collider. The obtained value of Br(ϕ→e+e−)Br(ϕ→π+π−π0)=(4.51±0.16±0.11)×10−5 is in good agreement with the previous measurements and has the best accuracy. Analysis of the Dalitz plot was performed. The contributions of the dominant ϕ→ρπ mechanism as well as of a small direct ϕ→3π amplitude were determined.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
Radiative decays of the $\phi$ meson have been studied using a data sample of about 19 million $\phi$ decays collected by the CMD-2 detector at VEPP-2M collider in Novosibirsk. From selected $e^+e^-\to\pi^{0}\pi^{0}\gamma$ and $e^+e^-\to\eta\pi^{0}\gamma$ events the following model independent results have been obtained: \par $Br(\phi\to\pi^{0}\pi^{0}\gamma) = (0.92\pm 0.08\pm0.06)\times10^{-4}$ for $M_{\pi^{0}\pi^{0}}>700$ MeV, \par $Br(\phi\to\eta\pi^{0}\gamma) = (0.90\pm 0.24\pm 0.10)\times10^{-4}$. It is shown that the intermediate mechanism $f_{0}(980)\gamma$ dominates in the $\phi\to\pi^{0}\pi^{0}\gamma$ decay and the corresponding branching ratio is \par $Br(\phi\to f_{0}(980)\gamma)=(2.90\pm 0.21\pm1.54)\times10^{-4}$. The systematic error is dominated by the possible model uncertainty. \par Using the same data sample the upper limit has been obtained for the P- and CP-violating decay of $\eta$ at 90% CL: \par $Br(\eta\to\pi^{0}\pi^{0}) < 4.3\times10^{-4}$ >.
Using 11.6 pb^{-1} of data collected in the energy range 0.984--1.06 GeV by CMD-2 at VEPP-2M, the cross section of the reaction e+e- to pi+pi-pi+pi- has been studied. For the first time an interference pattern was observed in the energy dependence of the cross section near the phi meson. The branching ratio of the phi to pi+pi-pi+pi- decay double suppressed by the G-parity and OZI rule is measured Br(phi to pi+pi-pi+pi-) = (3.93 +- 1.74 +- 2.14) \cdot 10^{-6}. The upper limits have been placed for the decays phi to pi+pi-pi+pi-pi0 and phi to eta pi+pi- Br(phi to pi+pi-pi+pi-pi0) < 4.6 \cdot 10^{-6} 90% CL, Br(phi to eta pi+pi-) < 1.8 \cdot 10^{-5} 90% CL.
We have used 87 pb^-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to b bbar. We present model-independent upper limits on the cross section for narrow resonances which excludes the color-octet technirho in the mass interval 350 < M < 440 GeV/c^2. In addition, we exclude topgluons, predicted in models of topcolor-assisted technicolor, of width Gamma = 0.3 M in the mass range 280 < M < 670 GeV/c^2, of width Gamma = 0.5 M in the mass range 340 < M < 640 GeV/c^2, and of width Gamma = 0.7 M in the mass range 375 < M < 560 GeV/c^2.
Using 3.07 ${pb}^{-1}$ of data collected in the energy range 0.60-0.97 GeV by CMD-2, about 150 events of the process $\epm \to \pch$ have been selected. The energy dependence of the cross section agrees with the assumption of the $a_1(1260) \pi$ intermediate state which is dominant above 1 GeV. For the first time \fourpi events are observed at the $\rho$ meson energy. Under the assumption that all these events come from the $\rho$ meson decay, the value of the cross section at the $\rho$ meson peak corresponds to the following decay width: \Gamma(\rho^0 \to \fourpi) = (2.8 \pm 1.4 \pm 0.5) {keV} or to the branching ratio B(\rho^0 \to \fourpi) = (1.8 \pm 0.9 \pm 0.3) \cdot 10 ^{-5}.
First results of the study of the process e+e- \to 4\pi by the CMD-2 collaboration at VEPP-2M are presented for the energy range 1.05--1.38 GeV. Using an integrated luminosity of 5.8 pb^{-1}, energy dependence of the processes e+e- \to \pi^+\pi^- 2\pi^0 and e+e- \to 2\pi^+ 2\pi^- has been measured. Analysis of the differential distributions demonstrates the dominance of the a_1\pi and \omega\pi intermediate states. Upper limits for the contributions of other alternative mechanisms are also placed.
None
Multiplicity, inclusive, correlation and collective characteristics of multiparticle production processes inK+ Al,K+ Au, π+ Al and π+ Au interactions at 250 GeV/c are studied with the European Hybrid Spectrometer, providing high statistics and almost 4 π acceptance for final state charged particles. It is shown that the proton energy spectrum practically does not depend on the target atomic weight, but the proton angular distributions reveal a strongA-dependence. In a model independent way, the average number of intranuclear collisions is extracted, and it is shown that their dominant part (60% for Al and 80% for Au) is caused by interactions of the non-leading particles produced in the target fragmentation. The multiplication ratio of the produced particles for the Au nucleus changes fromR≃40 at the smallest rapidities in the target fragmentation region, down toR=0.37±0.06 at the largest rapidities in the beam fragmentation region. It is found that the average total longitudinal momentum of the charged products of the beam fragmentation depends weakly on the number of leading hadron (cluster) intranuclear collisions which are characterized by a low inelasticity coefficient 〈k〉=0.17±0.03.
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$.