None
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
Measurement of the exotic exchange reaction π − p → K + Σ − has been performed at 5 and 8 GeV, in the −0.015 to −0.13 and −0.009 to −0.15 (GeV/ c ) 2 range of t repectively. We give the value near t = 0 of the differential cross section at 5 GeV, 21 −21 +76 nb/(GeV/ c ) 2 , and an upper limit (< 37 nb/GeV/ c ) 2 ) at 8 GeV. As a check the measured differential cross section is given at both energies for the reaction π + p → K + Σ + in the same range of t ★★ ★★ Results presented here were included in the thesis of Doctorat d′Etat by M.N. Minard, Orsay, France, 1976. .
No description provided.
No description provided.
Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.
No description provided.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.
No description provided.
<NUCLEON PION> MASS DEPENDENCE.
From an experiment done with the CERN Omega spectrometer, triggered by a fast forward proton device, we present results on the differential cross section d σ d u for π − p backward elastic scattering. The d σ d u distribution agrees with an A e Bu law. The compilation of existing results shows a discrepancy between results but the ( d σ d u ) u=0 data fit perfectly an s 2 α 0 −2 dependence, as predicted by a single Δδ Regge trajectory exchange. A search for the reaction π − p → d p , with a fast forward deuteron, which can be produced by a double-baryon exchange mechanism, gives cross-section upper limits of ∼1% of the backward elastic cross section.
UMIN IS 0.0446 GEV**2.
UMIN IS 0.0333 GEV**2.
D(SIG)/DU FITTED FOR 0 < -U < 0.75 GEV**2 TO GIVE SLOPE/INTERCEPT.
An enhancement in the (K − π + ) mass distribution at 1871 ± 10 MeV with full width of 285 ± 40 MeV is observed in the charge-exchange reaction K − p → K − π + n at 10 and 16 GeV/ c . The energy dependence of its cross section, the shape of the differential cross section d σ /d t and the decay angular distributions are consistent with a production mechanism by pion exchange. No significant enhancement at the same mass is seen in the non-charge exchange reaction K − p → (K π ) − p. The experimental evidence is reviewed and it is suggested that there may be more than one K ∗ enhancement in the 1700–1900 mass region.
FOR ALL EVENTS WITH 1.7 < M(K- PI+) < 2 GEV. NO FORWARD DIP. 'THETA CUT'.
THE 14.3 GEV/C POINT IS FROM ANALYSING THE DATA OF M. SPIRO ET AL., PL 60B, 389 (1976) IN THE SAME WAY. 'THETA-CUT'.
A partial-wave analysis of the low-mass ( π + π − p) system produced in the reaction K − p → K − ( π + π − p) at 4.2 GeV/ c incident momentum is performed in order to study the two ( π + π − p) enhancements around 1500 and 1700 MeV. It is found that the low-mass ( π + π − p) system can be described using the spin-parity states J P = 1 2 + , 3 2 − and 5 2 + only. In the 1500 MeV region contributions are observed from the 1 2 + wave decaying into pϵ and the 3 2 − wave decaying into Δ ++ π − ; in the 1700 MeV region contributions are found from the 1 2 + wave decaying into Δ ++ π − , the 3 2 − wave decaying into pϵ, and the 5 2 + wave decaying into pϵ.
No description provided.