Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.
Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.
The polarizaton parameter has been measured for K + n elastic scatteringat five incident beam momenta between 0.851 GeV/ c and 1.351 GeV/ c for c.m. angles in the range −0.9 < cos θ ∗ < 0.9 . It is in good agreement with the most recent partial wave analysis of the KN system.
No description provided.
No description provided.
No description provided.
We have measured the spin-transfer parameters KLL, KSL, KLS, and KSS at 635 MeV from 50° to 178° c.m. and at 485 MeV from 74° to 176° c.m. These new data have a significant impact on the phase-shift analyses. There are now sufficient data near these energies to overdetermine the elastic nucleon-nucleon amplitudes.
Spin transfer parameters from np elastic scattering at 635 MeV. There is an additional overall normalisation of 2 PCT.
Spin transfer parameters from np elastic scattering at 485 MeV. There is an additional overall normalisation of 2 PCT.
We present a total of 323 data points of the spin correlation parameter A oonn (np) in a large angular interval at eight energies between 0.8 and 1.1 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The present data are the first existing results above 0.8 GeV.
No description provided.
No description provided.
No description provided.
We present a total of 191 and 203 data points of the elastic neutron-protonspin correlation parameters A ookk and A oosk , respectively. Both observables were measured in a large angular interval. The observable A ookk was measured from 0.312 to 1.10 GeV and A oosk from 0.80 to 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the polarized Saclay frozen-spin proton target. The beam polarization was oriented either along the beam direction or sideways, the target polarization was oriented longitudinally. Data are compared with phase-shift analyses predictions and with the PSI, LAMPF and SATURNE II results. Present results provide an important contribution to any future theoretical or phenomenological analysis.
No description provided.
No description provided.
No description provided.
A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran
Measurements of DNN with statistical errors only.
Measurements of DSL with statistical errors only.
Measurements of DSS with statistical errors only.
The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i
Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.
Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.
Measurements of the spin correlation parameter CLL. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We present data of several rescattering observables measured inn p elastic scattering between 0.80 and 1.10 GeV. The SATURNE II polarized beam of free neutrons obtained from the break-up of polarized deuterons was scattered on the Saclay polarized frozen-spin proton target. Three different configurations of beam and target polarization directions were used: the observablesDonon andKonno were measured with the normal-normal spin configuration at eight energies;Nonkk,Dos″ok andKos″ko were determined with the longitudinal-longitudinal configuration at six energies;Nonsk,Dos″ok andKos″so with the sideway-longitudinal configuration at six energies. Part of the data was obtained with an unpolarized CH2 target where only the two spin-index polarization transfer parametersKos″ko andKos″so were determined. Data are compared with phase shift analyses predictions and with the LAMPF results at 0.788 GeV. Present results are the first measurements of rescattering observables above 0.80 GeV. They provide an important contribution to any future theoretical or phenomenological analysis.
No description provided.
No description provided.
No description provided.