From an exposure of the Argonne National Laboratory 12-foot bubble chamber to a beam of 12.4-GeV/c protons we have obtained a 3649-event sample of the reaction pp→γ+anything, where we observe photon conversions into e+e− pairs in the liquid hydrogen. We find that the invariant cross section for this reaction does not separate in its x and P⊥ dependence at our energy. By setting upper bounds on the cross sections for inclusive η and Σ0 production, we show that π0 decay is the dominant source of photons and therefore measure the cross section for inclusive π0 production to be σ(π0)=(31.5±2.6) mb. Comparison with the inclusive π+ and π− cross sections at 12.0 GeV/c shows that the relation 2σ(π0)=σ(π+)+σ(π−) is well satisfied. We confirm earlier indications that the average number of π0's per inelastic pp interaction is approximately independent of the number of associated charged particles produced.
Axis error includes +- 8/8 contribution (THE CROSS SECTION FOR NON-PI0 GAMMA PRODUCTION IS LESS THAN 2.3 MB AND HAS BEEN NEGLECTED IN OBTAINING THE 31.5+-2.6 MB CROSS SECTION FOR THE INCLUSIVE PI0 PRODUCTION).
We present results of complete measurements of the two-prong events observed in a 50 000-picture exposure of the 30-in. hydrogen bubble chamber to a 205−GeVc proton beam at the National Accelerator Laboratory. Using kinematic fitting, elastic and inelastic events are separated and cross sections are obtained. The total two-prong cross section is measured to be 9.77 ± 0.40 mb, of which 2.85 ± 0.26 mb represents the inelastic contribution. The total elastic cross section is measured to be 6.92 ± 0.44 mb. Our data are consistent with the break in dσdt at |t|∼0.1−0.2 (GeVc)2 observed at the CERN ISR. A prominent low-mass enhancement is observed in the distribution of missing mass squared from the slow proton for the inelastic events. An analysis based on the missing-mass spectrum and the particle rapidities shows that this low-mass enhancement accounts for about 77% of the total inelastic two-prong cross section. The diffractive cross section in the two-prong events is 2.20 ± 0.25 mb, in agreement with certain two-component models.
USING A TOTAL CROSS SECTION OF 39.0 +- 1.0 MB.
No description provided.
The missing-mass technique has been used to study the spectra of neutral mesons produced by 2- and 3-Gev protons in the reaction p+d→He3+x0. Cross sections (dσdΩc.m.) of about 10−34 cm2/sr were observed for the π, η, and ω for 3-GeV protons. A peak with a much smaller cross section was observed at a mass of 956 MeV. We have tentatively identified this peak as the η′. Cross sections for the π and η were nearly a factor of 10 larger at 2 GeV than at 3 GeV. Deviations from simple phase space were observed near the two-pion threshold in both 2-GeV and 3-GeV data. Details of the experimental method and of the results are presented.
Axis error includes +- 0.0/0.0 contribution (?////).
Results are presented on the elastic scattering of photons by protons. The incident photon energy ranged from 0.55 GeV to 4.5 GeV, and the four-momentum transfer t ranged from 0.12 to 1.0 (GeV/c)2. The data at large angles, 60°<θ*<115°, are characterized by a pronounced excitation of the D13(1518) resonance, a shoulder in the 1688-MeV mass region, and a precipitous drop thereafter in the cross section as a function of incident energy. The low-t data are characterized by a diffraction slope of 5 (GeV/c)−2. The data are inconsistent with the predictions of the vector-dominance model if the latter is restricted to ρ0, ω, and φ vector mesons.
No description provided.
In a study of the missing-mass spectrum near 1 GeV in the reaction π−+p→MM+n at three incident momenta near 2 GeV, we find no evidence for the recently reported narrow neutral mesons at 940, 963, and 1033 MeV.
No description provided.
Total cross sections of p¯p and p¯d have been measured between 360 and 1050 MeV/c, with high statistical precision. Structures are observed in both cross sections at about the same momenta. For p¯p, the central mass is 1932±2 MeV/c2, and a fit to the data with a simple Breit-Wigner resonance plus background gives Γ=9−3+4 MeV/c2. The data suggest that the structures are in the isospin-1 state.
No description provided.
The following reactions have been analyzed: (1) p¯p→π−π−π+π+; (2) p¯p→π−π+K−K+; (3) p¯p→K−K−K+K+. Cross sections as a function of beam momentum ranging from 1.6 to 2.2 GeVc are presented. The percentage of resonance production in reaction (1) is examined using the maximum-likelihood (ML) method. The channel is dominated by ρππ and ρf production. The percentage of ρf decreases with p¯ momentum, while ρππ appears to increase. ML fits are also made to reaction (2); the reaction is dominated by K*Kπ, ϕππ, and ρKK production. An enhancement is seen in the Q region of the ππK mass spectrum at 1278 MeV, with FWHM (full width at half maximum) of 25 MeV. Six events are consistent with reaction (3). Mass spectra indicate that five events have at least one ϕ meson produced; one of these is a ϕϕ event.
NORMALIZED TO KNOWN TOTAL CROSS SECTION.
'FIT 9'. ENERGY DEPENDENCE AND EFFECT OF BOSE-EINSTEIN STATISTICS ALSO STUDIED.
'FIT F'.
The charged-particle multiplicity distribution in 205−GeVc proton-proton interactions is presented. In addition, the total diffractive contributions to each charged multiplicity are estimated assuming a factorizable Pomeron.
THE TOTAL CROSS SECTION NORMALIZATION COMES FROM THIS AND OTHER EXPERIMENTS.
Differential cross sections for dp elastic scattering from 60° to 175° center of momentum (c.m.) were measured at 3.43, 4.50, 5.75, and 6.60 GeVc incident deuteron momentum. The measurements were made with a two-arm magnetic spectrometer, making use of multiwire proportional chamber detectors. The deuterons were accelerated at the Bevatron of the Lawrence Berkeley Laboratory. Data are compared with predictions of the baryon-pickup model and the one-pion-exchange model. The backward dip at 180° c.m. for 4.5 GeVc, predicted by Craigie and Wilkin using the one-pion-exchange model, is not observed, but reasonable fits to the momentum variation and angular distributions are found. When the data are plotted against the variable Δ of the baryon-pickup model, the s dependence is greatly reduced.
No description provided.
No description provided.
No description provided.
We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.
No description provided.
No description provided.